test / app.py
Ali2206's picture
Update app.py
398d7f9 verified
raw
history blame
5.69 kB
import os
import json
import torch
import logging
import numpy
import gradio as gr
import torch.serialization
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
# Allow loading old numpy types with torch.load
torch.serialization.add_safe_globals([
numpy.core.multiarray._reconstruct,
numpy.ndarray,
numpy.dtype,
numpy.dtypes.Float32DType
])
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
current_dir = os.path.dirname(os.path.abspath(__file__))
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
}
}
def generate_tool_embeddings(agent):
tu = ToolUniverse(tool_files=CONFIG["tool_files"])
tu.load_tools()
embedding_tensor = agent.rag_model.load_tool_desc_embedding(tu)
if embedding_tensor is not None:
torch.save(embedding_tensor, CONFIG["embedding_filename"])
logger.info(f"Saved new embedding tensor to {CONFIG['embedding_filename']}")
else:
logger.warning("Embedding generation returned None")
def prepare_tool_files():
os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
try:
tu = ToolUniverse()
tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", [])
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
except Exception as e:
logger.error(f"Tool generation failed: {e}")
def create_agent():
prepare_tool_files()
try:
agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=42,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
if not os.path.exists(CONFIG["embedding_filename"]):
generate_tool_embeddings(agent)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Agent initialization failed: {e}")
raise
def respond(msg, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
if not isinstance(msg, str) or len(msg.strip()) <= 10:
return chat_history + [{"role": "assistant", "content": "Hi, I am TxAgent. Please provide a valid message longer than 10 characters."}]
message = msg.strip()
chat_history.append({"role": "user", "content": message})
formatted_history = chat_history # format as list of dicts for run_gradio_chat
try:
response_generator = agent.run_gradio_chat(
message=message,
history=formatted_history,
temperature=temperature,
max_new_tokens=max_new_tokens,
max_token=max_tokens,
call_agent=multi_agent,
conversation=conversation,
max_round=max_round,
seed=42,
call_agent_level=0,
sub_agent_task=None
)
collected = ""
for chunk in response_generator:
if isinstance(chunk, list):
for msg in chunk:
if isinstance(msg, dict) and "content" in msg:
collected += msg["content"]
elif isinstance(chunk, dict) and "content" in chunk:
collected += chunk["content"]
elif isinstance(chunk, str):
collected += chunk
chat_history.append({"role": "assistant", "content": collected or "⚠️ No content returned."})
except Exception as e:
chat_history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
return chat_history
def create_demo(agent):
with gr.Blocks(css=".gr-button { font-size: 18px !important; }") as demo:
chatbot = gr.Chatbot(label="TxAgent", type="messages", render_markdown=True)
msg = gr.Textbox(label="Your question", placeholder="Ask a biomedical question...", scale=6)
with gr.Row():
temp = gr.Slider(0, 1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds")
multi_agent = gr.Checkbox(label="Multi-Agent Mode")
submit = gr.Button("Ask TxAgent")
submit.click(
respond,
inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds],
outputs=[chatbot]
)
return demo
def main():
global agent
agent = create_agent()
demo = create_demo(agent)
demo.launch(share=True)
if __name__ == "__main__":
main()