File size: 5,691 Bytes
4b0f1a8 511fb62 5ffaf72 9aeb1dd 0151c98 9aeb1dd 0151c98 9438945 511fb62 410d25f 1a87180 b301866 99cd953 1a87180 b301866 0151c98 79fb3cd 511fb62 5ffaf72 12efdad 59ced24 a87f861 1a87180 59ced24 9438945 79fb3cd a87f861 12efdad 70839bb 1a87180 398d7f9 1a87180 79fb3cd e3711be 6916257 5ffaf72 709aba9 6916257 5ffaf72 e3711be 6916257 709aba9 6916257 5ffaf72 1a87180 6916257 1a87180 6916257 5ffaf72 6916257 e6865f5 1a87180 5205ee8 5ffaf72 398d7f9 79fb3cd 6d40680 709aba9 5ffaf72 398d7f9 5ffaf72 fc30674 951cbe7 60a4dae 398d7f9 951cbe7 709aba9 951cbe7 6d40680 709aba9 5ffaf72 e6865f5 5ffaf72 709aba9 5ffaf72 709aba9 6d40680 709aba9 511fb62 79fb3cd 511fb62 5ffaf72 398d7f9 70839bb b301866 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import json
import torch
import logging
import numpy
import gradio as gr
import torch.serialization
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
# Allow loading old numpy types with torch.load
torch.serialization.add_safe_globals([
numpy.core.multiarray._reconstruct,
numpy.ndarray,
numpy.dtype,
numpy.dtypes.Float32DType
])
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
current_dir = os.path.dirname(os.path.abspath(__file__))
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
}
}
def generate_tool_embeddings(agent):
tu = ToolUniverse(tool_files=CONFIG["tool_files"])
tu.load_tools()
embedding_tensor = agent.rag_model.load_tool_desc_embedding(tu)
if embedding_tensor is not None:
torch.save(embedding_tensor, CONFIG["embedding_filename"])
logger.info(f"Saved new embedding tensor to {CONFIG['embedding_filename']}")
else:
logger.warning("Embedding generation returned None")
def prepare_tool_files():
os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
try:
tu = ToolUniverse()
tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", [])
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
except Exception as e:
logger.error(f"Tool generation failed: {e}")
def create_agent():
prepare_tool_files()
try:
agent = TxAgent(
CONFIG["model_name"],
CONFIG["rag_model_name"],
tool_files_dict=CONFIG["tool_files"],
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=42,
additional_default_tools=["DirectResponse", "RequireClarification"]
)
if not os.path.exists(CONFIG["embedding_filename"]):
generate_tool_embeddings(agent)
agent.init_model()
return agent
except Exception as e:
logger.error(f"Agent initialization failed: {e}")
raise
def respond(msg, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
if not isinstance(msg, str) or len(msg.strip()) <= 10:
return chat_history + [{"role": "assistant", "content": "Hi, I am TxAgent. Please provide a valid message longer than 10 characters."}]
message = msg.strip()
chat_history.append({"role": "user", "content": message})
formatted_history = chat_history # format as list of dicts for run_gradio_chat
try:
response_generator = agent.run_gradio_chat(
message=message,
history=formatted_history,
temperature=temperature,
max_new_tokens=max_new_tokens,
max_token=max_tokens,
call_agent=multi_agent,
conversation=conversation,
max_round=max_round,
seed=42,
call_agent_level=0,
sub_agent_task=None
)
collected = ""
for chunk in response_generator:
if isinstance(chunk, list):
for msg in chunk:
if isinstance(msg, dict) and "content" in msg:
collected += msg["content"]
elif isinstance(chunk, dict) and "content" in chunk:
collected += chunk["content"]
elif isinstance(chunk, str):
collected += chunk
chat_history.append({"role": "assistant", "content": collected or "⚠️ No content returned."})
except Exception as e:
chat_history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
return chat_history
def create_demo(agent):
with gr.Blocks(css=".gr-button { font-size: 18px !important; }") as demo:
chatbot = gr.Chatbot(label="TxAgent", type="messages", render_markdown=True)
msg = gr.Textbox(label="Your question", placeholder="Ask a biomedical question...", scale=6)
with gr.Row():
temp = gr.Slider(0, 1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds")
multi_agent = gr.Checkbox(label="Multi-Agent Mode")
submit = gr.Button("Ask TxAgent")
submit.click(
respond,
inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds],
outputs=[chatbot]
)
return demo
def main():
global agent
agent = create_agent()
demo = create_demo(agent)
demo.launch(share=True)
if __name__ == "__main__":
main()
|