File size: 10,092 Bytes
4b0f1a8 167b103 b8c0ae3 59ced24 167b103 bae0943 410d25f 929325a 9438945 410d25f 12efdad bae0943 59ced24 a87f861 f2d6e83 59ced24 9438945 167b103 a87f861 12efdad 70839bb 58353ee 849209d 167b103 929325a 167b103 58353ee 167b103 bae0943 167b103 929325a 410d25f bae0943 12efdad bae0943 4b0f1a8 bae0943 4b0f1a8 bae0943 12efdad 929325a bae0943 4b0f1a8 849209d 4b0f1a8 bae0943 9438945 bae0943 63950ea bae0943 63950ea bae0943 63950ea bae0943 dffc0b0 4b0f1a8 35da672 167b103 4b0f1a8 929325a bae0943 4b0f1a8 929325a 849209d 4b0f1a8 bae0943 9438945 bae0943 929325a bae0943 92abf33 bae0943 c3cd8cd 929325a bae0943 4b0f1a8 35da672 929325a 4b0f1a8 bae0943 929325a bae0943 849209d 35da672 63950ea bae0943 35da672 849209d 4b0f1a8 59ced24 849209d 1ee16da aa0dcbf 1ee16da 63950ea 849209d 63950ea 849209d bae0943 c3cd8cd 35da672 c3cd8cd 35da672 849209d 35da672 bae0943 35da672 929325a 35da672 849209d 8e533b3 70839bb 35da672 63950ea 849209d dffc0b0 35da672 849209d 35da672 849209d 35da672 dffc0b0 35da672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import json
import logging
import torch
import gradio as gr
from tooluniverse import ToolUniverse
from transformers import AutoModelForCausalLM, AutoTokenizer
import warnings
from typing import List, Dict, Any
from importlib.resources import files
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Configuration
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": "./data/new_tool.json"
}
}
# Logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def prepare_tool_files():
"""Ensure tool files exist and are populated"""
os.makedirs("./data", exist_ok=True)
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
logger.info("Generating tool list using ToolUniverse...")
tu = ToolUniverse()
tools = tu.get_all_tools() if hasattr(tu, 'get_all_tools') else []
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
json.dump(tools, f, indent=2)
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
def safe_load_embeddings(filepath: str) -> Any:
"""Safely load embeddings with proper weights_only handling"""
try:
# First try with weights_only=True (secure mode)
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
try:
# Try with the safe_globals context manager
with torch.serialization.safe_globals([torch.serialization._reconstruct]):
return torch.load(filepath, weights_only=False)
except Exception as e:
logger.error(f"Failed to load embeddings even with safe_globals: {str(e)}")
return None
class TxAgentWrapper:
def __init__(self):
self.model = None
self.tokenizer = None
self.rag_model = None
self.tooluniverse = None
self.is_initialized = False
self.special_tools = ['Finish', 'Tool_RAG', 'DirectResponse', 'RequireClarification']
def initialize(self) -> str:
"""Initialize the model from Hugging Face"""
if self.is_initialized:
return "β
Already initialized"
try:
logger.info("Loading models from Hugging Face Hub...")
# Verify tool files exist
for tool_name, tool_path in CONFIG["tool_files"].items():
if tool_name != "new_tool" and not os.path.exists(tool_path):
raise FileNotFoundError(f"Tool file not found: {tool_path}")
# Initialize ToolUniverse with verified paths
self.tooluniverse = ToolUniverse(tool_files=CONFIG["tool_files"])
if hasattr(self.tooluniverse, 'load_tools'):
self.tooluniverse.load_tools()
logger.info(f"Loaded {len(self.tooluniverse.tools)} tools")
else:
logger.error("ToolUniverse doesn't have load_tools method")
return "β Failed to load tools"
# Load main model
self.tokenizer = AutoTokenizer.from_pretrained(CONFIG["model_name"])
self.model = AutoModelForCausalLM.from_pretrained(
CONFIG["model_name"],
device_map="auto",
torch_dtype=torch.float16
)
# Load embeddings if file exists
if os.path.exists(CONFIG["embedding_filename"]):
self.rag_model = safe_load_embeddings(CONFIG["embedding_filename"])
if self.rag_model is None:
return "β Failed to load embeddings"
self.is_initialized = True
return "β
Model initialized successfully"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"β Initialization failed: {str(e)}"
def chat(self, message: str, history: List[List[str]]) -> List[List[str]]:
"""Handle chat interactions with the model"""
if not self.is_initialized:
return history + [["", "β οΈ Please initialize the model first"]]
try:
if len(message) <= 10:
return history + [["", "Please provide a more detailed question (at least 10 characters)"]]
# Prepare tools prompt
tools_prompt = self._prepare_tools_prompt(message)
# Format conversation
conversation = [
{"role": "system", "content": "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning." + tools_prompt},
*self._format_history(history),
{"role": "user", "content": message}
]
# Generate response
inputs = self.tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(self.model.device)
outputs = self.model.generate(
inputs,
max_new_tokens=1024,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
# Decode and clean response
response = self.tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
response = response.split("[TOOL_CALLS]")[0].strip()
return history + [[message, response]]
except Exception as e:
logger.error(f"Chat error: {str(e)}")
return history + [["", f"Error: {str(e)}"]]
def _prepare_tools_prompt(self, message: str) -> str:
"""Prepare the tools prompt section"""
if not hasattr(self.tooluniverse, 'tools'):
return ""
tools_prompt = "\n\nYou have access to the following tools:\n"
for tool in self.tooluniverse.tools:
if tool['name'] not in self.special_tools:
tools_prompt += f"- {tool['name']}: {tool['description']}\n"
# Add special tools
tools_prompt += "\nSpecial tools:\n"
tools_prompt += "- Finish: Use when you have the final answer\n"
tools_prompt += "- Tool_RAG: Search for additional tools when needed\n"
return tools_prompt
def _format_history(self, history: List[List[str]]) -> List[Dict[str, str]]:
"""Format chat history for the model"""
formatted = []
for user_msg, bot_msg in history:
formatted.append({"role": "user", "content": user_msg})
if bot_msg:
formatted.append({"role": "assistant", "content": bot_msg})
return formatted
def create_interface() -> gr.Blocks:
"""Create the Gradio interface"""
agent = TxAgentWrapper()
with gr.Blocks(
title="TxAgent",
css="""
.gradio-container {max-width: 900px !important}
"""
) as demo:
gr.Markdown("""
# π§ TxAgent: Therapeutic Reasoning AI
### (Loading from Hugging Face Hub)
""")
with gr.Row():
init_btn = gr.Button("Initialize Model", variant="primary")
init_status = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(
height=500,
label="Conversation"
)
msg = gr.Textbox(label="Your clinical question")
clear_btn = gr.Button("Clear Chat")
gr.Examples(
examples=[
"How to adjust Journavx for renal impairment?",
"Xolremdi and Prozac interaction in WHIM syndrome?",
"Alternative to Warfarin for patient with amiodarone?"
],
inputs=msg
)
def wrapper_initialize():
status = agent.initialize()
return status, gr.update(interactive=False)
init_btn.click(
fn=wrapper_initialize,
outputs=[init_status, init_btn]
)
msg.submit(
fn=agent.chat,
inputs=[msg, chatbot],
outputs=chatbot
).then(
lambda: "", # Clear message box
outputs=msg
)
clear_btn.click(
fn=lambda: ([], ""),
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
# Verify embedding file exists
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
logger.info("Please ensure the file is in the root directory")
else:
logger.info(f"Found embedding file: {CONFIG['embedding_filename']}")
# Prepare tool files
prepare_tool_files()
# Launch interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise |