Spaces:
Configuration error
Configuration error
| from langchain_community.tools import DuckDuckGoSearchRun | |
| from typing import TypedDict,Annotated | |
| from langgraph.graph.message import add_messages | |
| from langchain_core.messages import AnyMessage ,HumanMessage,AIMessage | |
| from langgraph.prebuilt import ToolNode | |
| from langgraph.graph import START,StateGraph | |
| from langgraph.prebuilt import tools_condition | |
| from langchain_groq import ChatGroq | |
| from langchain.tools import Tool | |
| from huggingface_hub import list_models | |
| import random | |
| from dotenv import load_dotenv | |
| import os | |
| from langchain_community.utilities import SerpAPIWrapper | |
| load_dotenv() | |
| os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY") | |
| #os.environ["SERPAPI_API_KEY"]=os.getenv("SERPAPI_API_KEY") | |
| groq_api_key=os.getenv("GROQ_API_KEY") | |
| serp_api_key=os.getenv("SERPAPI_API_KEY") | |
| from langchain_community.utilities import SerpAPIWrapper | |
| search = SerpAPIWrapper(serpapi_api_key=serp_api_key) | |
| search_tool = Tool( | |
| name="SerpAPI Search", | |
| func=search.run, | |
| description="Search the web using SerpAPI" | |
| ) | |
| ### weather tool | |
| def get_weather_info(location: str) -> str: | |
| """Fetches dummy weather information for a given location.""" | |
| # Dummy weather data | |
| weather_conditions = [ | |
| {"condition": "Rainy", "temp_c": 15}, | |
| {"condition": "Clear", "temp_c": 25}, | |
| {"condition": "Windy", "temp_c": 20} | |
| ] | |
| # Randomly select a weather condition | |
| data = random.choice(weather_conditions) | |
| return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C" | |
| # Initialize the tool | |
| weather_info_tool = Tool( | |
| name="get_weather_info", | |
| func=get_weather_info, | |
| description="Fetches dummy weather information for a given location." | |
| ) | |
| ##most downloaded | |
| def get_hub_stats(author: str) -> str: | |
| """Fetches the most downloaded model from a specific author on the Hugging Face Hub.""" | |
| try: | |
| # List models from the specified author, sorted by downloads | |
| models = list(list_models(author=author, sort="downloads", direction=-1, limit=1)) | |
| if models: | |
| model = models[0] | |
| return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads." | |
| else: | |
| return f"No models found for author {author}." | |
| except Exception as e: | |
| return f"Error fetching models for {author}: {str(e)}" | |
| # Initialize the tool | |
| hub_stats_tool = Tool( | |
| name="get_hub_stats", | |
| func=get_hub_stats, | |
| description="Fetches the most downloaded model from a specific author on the Hugging Face Hub." | |
| ) | |
| ### langchain | |
| import datasets | |
| from langchain.docstore.document import Document | |
| from langchain_community.retrievers import BM25Retriever | |
| from langchain.tools import Tool | |
| from typing import TypedDict, Annotated | |
| from langgraph.graph.message import add_messages | |
| from langchain_core.messages import AnyMessage,HumanMessage,AIMessage | |
| from langgraph.prebuilt import ToolNode | |
| from langgraph.graph import START,StateGraph | |
| from langgraph.prebuilt import tools_condition | |
| from langchain_huggingface import HuggingFaceEndpoint ,ChatHuggingFace | |
| from dotenv import load_dotenv | |
| from langchain_groq import ChatGroq | |
| import os | |
| load_dotenv() | |
| os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY") | |
| groq_api_key=os.getenv("GROQ_API_KEY") | |
| # Load the dataset | |
| guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train") | |
| # Convert dataset entries into Document objects | |
| docs = [ | |
| Document( | |
| page_content="\n".join([ | |
| f"Name: {guest['name']}", | |
| f"Relation: {guest['relation']}", | |
| f"Description: {guest['description']}", | |
| f"Email: {guest['email']}" | |
| ]), | |
| metadata={"name": guest["name"]} | |
| ) | |
| for guest in guest_dataset | |
| ] | |
| bm25_retriever = BM25Retriever.from_documents(docs) | |
| def extract_text(query: str) -> str: | |
| """Retrieves detailed information about gala guests based on their name or relation.""" | |
| results = bm25_retriever.invoke(query) | |
| if results: | |
| return "\n\n".join([doc.page_content for doc in results[:3]]) | |
| else: | |
| return "No matching guest information found." | |
| guest_info_tool = Tool( | |
| name="guest_info_retriever", | |
| func=extract_text, | |
| description="Retrieves detailed information about gala guests based on their name or relation." | |
| ) | |
| # Generate the chat interface , including the tools | |
| llm = ChatGroq(model="Gemma2-9b-It",groq_api_key=groq_api_key) | |
| tools = [guest_info_tool,search_tool,weather_info_tool,hub_stats_tool] | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Generate the AgentState and Agent graph | |
| class AgentState(TypedDict): | |
| messages: Annotated[list[AnyMessage], add_messages] | |
| def assistant(state: AgentState): | |
| return { | |
| "messages": [llm_with_tools.invoke(state["messages"])], | |
| } | |
| ## The graph | |
| builder = StateGraph(AgentState) | |
| # Define nodes: these do the work | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| # Define edges: these determine how the control flow moves | |
| builder.add_edge(START, "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| # If the latest message requires a tool, route to tools | |
| # Otherwise, provide a direct response | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| alfred = builder.compile() | |
| messages = [HumanMessage(content="Tell me about our guest named 'Lady Ada Lovelace'.")] | |
| response = alfred.invoke({"messages": messages}) | |