File size: 8,312 Bytes
274f2aa
 
9209486
274f2aa
 
84c2e80
274f2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58523cf
274f2aa
 
0f49ead
e590685
cc2c27c
e590685
a7aa994
274f2aa
 
0f49ead
58523cf
e5cc33e
274f2aa
58523cf
6424905
58523cf
274f2aa
58523cf
274f2aa
58523cf
274f2aa
 
 
 
 
a7aa994
517e102
a7aa994
209669b
274f2aa
 
58523cf
274f2aa
 
 
 
 
b2b39bb
274f2aa
 
 
 
58523cf
274f2aa
 
 
 
 
6424905
867582e
274f2aa
 
 
 
 
58523cf
274f2aa
58523cf
274f2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7d4c2
274f2aa
 
 
 
6424905
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
   
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.

import argparse
from concurrent.futures import ProcessPoolExecutor
import os
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings

import torch
import gradio as gr

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen


MODEL = None  # Last used model
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 6
BATCHED_DURATION = 15
INTERRUPTING = False
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call


def _call_nostderr(*args, **kwargs):
    # Avoid ffmpeg vomitting on the logs.
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)


sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(3)
pool.__enter__()


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        out = gr.make_waveform(*args, **kwargs)
        print("Make a video took", time.time() - be)
        return out


def load_model(version='melody'):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        MODEL = MusicGen.get_pretrained(version)


def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
    MODEL.set_generation_params(duration=duration, **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
    be = time.time()
    processed_melodies = []
    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)

    if any(m is not None for m in processed_melodies):
        outputs = MODEL.generate_with_chroma(
            descriptions=texts,
            melody_wavs=processed_melodies,
            melody_sample_rate=target_sr,
            progress=progress,
        )
    else:
        outputs = MODEL.generate(texts, progress=progress)

    outputs = outputs.detach().cpu().float()
    out_files = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_files.append(pool.submit(make_waveform, file.name))
    res = [out_file.result() for out_file in out_files]
    print("batch finished", len(texts), time.time() - be)
    return res


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('melody')
    res = _do_predictions(texts, melodies, BATCHED_DURATION)
    return [res]


def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False
    topk = int(topk)
    load_model(model)

    def _progress(generated, to_generate):
        progress((generated, to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    outs = _do_predictions(
        [text], [melody], duration, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
    return outs[0]


def ui_full(launch_kwargs):
    with gr.Blocks() as interface:
        gr.Markdown(
            """
          
            """
        )




        
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Текст пример (bass drum cyberpunk)", interactive=True)
                    melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (необязательно)", interactive=True)
                with gr.Row():
                    submit = gr.Button("Создать")
                    # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                    _ = gr.Button("Остановить").click(fn=interrupt, queue=False)
                with gr.Row():
                    model = gr.Radio(["melody", "medium", "small", "large"], label="Тип трека", value="melody", interactive=True)
                with gr.Row():
                    duration = gr.Slider(minimum=1, maximum=120, value=10, label="Время трека(seconds)", interactive=True)
                with gr.Row():
                    topk = gr.Number(label="Top-k", value=250, interactive=True)
                    topp = gr.Number(label="Top-p", value=0, interactive=True)
                    temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
                    cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
            with gr.Column():
                output = gr.Video(label="MP3 файл генерации")
        submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output])
  
        gr.Markdown(
            """
        
            """
        )

        interface.queue().launch(**launch_kwargs)

 
def ui_batched(launch_kwargs):
    with gr.Blocks() as demo:
        gr.Markdown(
            """
          
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Describe your music", lines=2, interactive=True)
                    melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
                with gr.Row():
                    submit = gr.Button("Generate")
            with gr.Column():
                output = gr.Video(label="Generated Music")
        submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
 
        gr.Markdown("""
    
        """)

        demo.queue(max_size=8 * 4).launch(**launch_kwargs)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )

    args = parser.parse_args()

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share
 
    # Show the interface
    if IS_BATCHED:
        ui_batched(launch_kwargs)
    else:
        ui_full(launch_kwargs)