Spaces:
Running
on
Zero
Running
on
Zero
import os | |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
os.system('sudo modprobe -r nvidia_uvm && sudo modprobe nvidia_uvm" spaces') | |
import spaces | |
import torch | |
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
#from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig | |
import gradio as gr | |
import tempfile | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers" | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
# Initialize pipelines | |
text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) | |
image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) | |
for pipe in [text_to_video_pipe, image_to_video_pipe]: | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0) | |
pipe.to("cuda") | |
##Lora testing | |
#vae = AutoencoderKLWan.from_pretrained("Kijai/WanVideo_comfy", filename="Wan2_2_VAE_bf16.safetensors", torch_dtype=torch.bfloat16) | |
# LORA_REPO_ID = "JERRYNPC/WAN2.2-LORA-NSFW" | |
#apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2)) | |
# LORA_FILENAME= "jerry_HIGH-nsfw-V10E800.safetensors" | |
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) | |
# pipe.fuse_lora() | |
#LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets" | |
#LORA_FILENAME = "HSToric_color_Wan22_5b_LoRA.safetensors" | |
LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets" | |
LORA_FILENAME = "HSTcolor_Wan5b_LoRA_Rank64_PowerEMAsigmaRel020.safetensors" | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
pipe.load_lora_weights(causvid_path, adapter_name="wan_lora") | |
pipe.set_adapters(["wan_lora"], adapter_weights=[1.0]) | |
pipe.fuse_lora() | |
# Constants | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 832 | |
DEFAULT_W_SLIDER_VALUE = 832 | |
NEW_FORMULA_MAX_AREA = 1024 * 1024 | |
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024 | |
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 16 | |
MIN_FRAMES_MODEL = 17 | |
MAX_FRAMES_MODEL = 193 | |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" | |
default_negative_prompt = "dull, overexposed, flashing, stuttering, static, blurred, vapid, banal, static, overall gray, worst, low, JPEG compression residue, incomplete, extra, error, missing, vanishing, lapse, broken, wrong, deformed, disfigured, misshapen, fused fingers, still, messy, watermark" | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def get_duration(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
progress): | |
if steps > 5 and duration_seconds > 5: | |
return 60 | |
elif steps > 5 or duration_seconds > 5: | |
return 50 | |
else: | |
return 40 | |
def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)): | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
if input_image is not None: | |
resized_image = input_image.resize((target_w, target_h)) | |
with torch.inference_mode(): | |
output_frames_list = image_to_video_pipe( | |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
else: | |
with torch.inference_mode(): | |
output_frames_list = text_to_video_pipe( | |
prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed | |
with gr.Blocks() as demo: | |
gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo") | |
gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)") | |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) | |
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") | |
with gr.Accordion("Advanced Settings", open=True): | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) | |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) | |
with gr.Row(): | |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})") | |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})") | |
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps") | |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale") | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
input_image_component.upload( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
input_image_component.clear( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
ui_inputs = [ | |
input_image_component, prompt_input, height_input, width_input, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
gr.Examples( | |
examples=[ | |
[None, "A person eating spaghetti", 1024, 720], | |
["cat.png", "The cat removes the glasses from its eyes.", 1088, 800], | |
[None, "a penguin playfully dancing in the snow, Antarctica", 1024, 720], | |
["peng.png", "a penguin running towards camera joyfully, Antarctica", 896, 512], | |
], | |
inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |