FastWan2.2_5B_TI2V / app_fast.py
AlekseyCalvin's picture
Update app_fast.py
41cd548 verified
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
os.system('sudo modprobe -r nvidia_uvm && sudo modprobe nvidia_uvm" spaces')
import spaces
import torch
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
#from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
# Initialize pipelines
text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
for pipe in [text_to_video_pipe, image_to_video_pipe]:
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
pipe.to("cuda")
##Lora testing
#vae = AutoencoderKLWan.from_pretrained("Kijai/WanVideo_comfy", filename="Wan2_2_VAE_bf16.safetensors", torch_dtype=torch.bfloat16)
# LORA_REPO_ID = "JERRYNPC/WAN2.2-LORA-NSFW"
#apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2))
# LORA_FILENAME= "jerry_HIGH-nsfw-V10E800.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()
#LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets"
#LORA_FILENAME = "HSToric_color_Wan22_5b_LoRA.safetensors"
LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets"
LORA_FILENAME = "HSTcolor_Wan5b_LoRA_Rank64_PowerEMAsigmaRel020.safetensors"
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="wan_lora")
pipe.set_adapters(["wan_lora"], adapter_weights=[1.0])
pipe.fuse_lora()
# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 832
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 1024 * 1024
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 17
MAX_FRAMES_MODEL = 193
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "dull, overexposed, flashing, stuttering, static, blurred, vapid, banal, static, overall gray, worst, low, JPEG compression residue, incomplete, extra, error, missing, vanishing, lapse, broken, wrong, deformed, disfigured, misshapen, fused fingers, still, messy, watermark"
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
if steps > 5 and duration_seconds > 5:
return 60
elif steps > 5 or duration_seconds > 5:
return 50
else:
return 40
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
if input_image is not None:
resized_image = input_image.resize((target_w, target_h))
with torch.inference_mode():
output_frames_list = image_to_video_pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
else:
with torch.inference_mode():
output_frames_list = text_to_video_pipe(
prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo")
gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
input_image_component, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[None, "A person eating spaghetti", 1024, 720],
["cat.png", "The cat removes the glasses from its eyes.", 1088, 800],
[None, "a penguin playfully dancing in the snow, Antarctica", 1024, 720],
["peng.png", "a penguin running towards camera joyfully, Antarctica", 896, 512],
],
inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch()