import os os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') os.system('sudo modprobe -r nvidia_uvm && sudo modprobe nvidia_uvm" spaces') import spaces import torch from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler from diffusers.utils import export_to_video #from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig import gradio as gr import tempfile from huggingface_hub import hf_hub_download import numpy as np from PIL import Image import random MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers" vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) # Initialize pipelines text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) for pipe in [text_to_video_pipe, image_to_video_pipe]: pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0) pipe.to("cuda") ##Lora testing #vae = AutoencoderKLWan.from_pretrained("Kijai/WanVideo_comfy", filename="Wan2_2_VAE_bf16.safetensors", torch_dtype=torch.bfloat16) # LORA_REPO_ID = "JERRYNPC/WAN2.2-LORA-NSFW" #apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2)) # LORA_FILENAME= "jerry_HIGH-nsfw-V10E800.safetensors" # causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) # pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") # pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) # pipe.fuse_lora() #LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets" #LORA_FILENAME = "HSToric_color_Wan22_5b_LoRA.safetensors" LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets" LORA_FILENAME = "HSTcolor_Wan5b_LoRA_Rank64_PowerEMAsigmaRel020.safetensors" causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) pipe.load_lora_weights(causvid_path, adapter_name="wan_lora") pipe.set_adapters(["wan_lora"], adapter_weights=[1.0]) pipe.fuse_lora() # Constants MOD_VALUE = 32 DEFAULT_H_SLIDER_VALUE = 832 DEFAULT_W_SLIDER_VALUE = 832 NEW_FORMULA_MAX_AREA = 1024 * 1024 SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024 SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024 MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 16 MIN_FRAMES_MODEL = 17 MAX_FRAMES_MODEL = 193 default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" default_negative_prompt = "dull, overexposed, flashing, stuttering, static, blurred, vapid, banal, static, overall gray, worst, low, JPEG compression residue, incomplete, extra, error, missing, vanishing, lapse, broken, wrong, deformed, disfigured, misshapen, fused fingers, still, messy, watermark" def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w): orig_w, orig_h = pil_image.size if orig_w <= 0 or orig_h <= 0: return default_h, default_w aspect_ratio = orig_h / orig_w calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) calc_h = max(mod_val, (calc_h // mod_val) * mod_val) calc_w = max(mod_val, (calc_w // mod_val) * mod_val) new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) return new_h, new_w def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): if uploaded_pil_image is None: return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) try: new_h, new_w = _calculate_new_dimensions_wan( uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE ) return gr.update(value=new_h), gr.update(value=new_w) except Exception as e: gr.Warning("Error attempting to calculate new dimensions") return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) def get_duration(input_image, prompt, height, width, negative_prompt, duration_seconds, guidance_scale, steps, seed, randomize_seed, progress): if steps > 5 and duration_seconds > 5: return 60 elif steps > 5 or duration_seconds > 5: return 50 else: return 40 @spaces.GPU(duration=get_duration) def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)): target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) if input_image is not None: resized_image = input_image.resize((target_w, target_h)) with torch.inference_mode(): output_frames_list = image_to_video_pipe( image=resized_image, prompt=prompt, negative_prompt=negative_prompt, height=target_h, width=target_w, num_frames=num_frames, guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed) ).frames[0] else: with torch.inference_mode(): output_frames_list = text_to_video_pipe( prompt=prompt, negative_prompt=negative_prompt, height=target_h, width=target_w, num_frames=num_frames, guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed) ).frames[0] with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=FIXED_FPS) return video_path, current_seed with gr.Blocks() as demo: gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo") gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""") with gr.Row(): with gr.Column(): input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)") prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") with gr.Accordion("Advanced Settings", open=True): negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) with gr.Row(): height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})") width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})") steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps") guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale") generate_button = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) input_image_component.upload( fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input] ) input_image_component.clear( fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input] ) ui_inputs = [ input_image_component, prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox ] generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) gr.Examples( examples=[ [None, "A person eating spaghetti", 1024, 720], ["cat.png", "The cat removes the glasses from its eyes.", 1088, 800], [None, "a penguin playfully dancing in the snow, Antarctica", 1024, 720], ["peng.png", "a penguin running towards camera joyfully, Antarctica", 896, 512], ], inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" ) if __name__ == "__main__": demo.queue().launch()