Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,499 Bytes
37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 37b2b3a 44ef737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import gradio as gr
import torch
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
import tempfile
import os
# Setup
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and VAE once
vae = AutoencoderKLWan.from_pretrained(
"Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
pipe = WanPipeline.from_pretrained(
"Wan-AI/Wan2.2-T2V-A14B-Diffusers", vae=vae, torch_dtype=dtype
)
pipe.to(device)
# Core inference function
def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps):
with torch.autocast("cuda", dtype=dtype):
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=guidance_scale,
guidance_scale_2=guidance_scale_2,
num_inference_steps=num_steps,
).frames[0]
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, "output.mp4")
export_to_video(output, video_path, fps=16)
return video_path
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🐾 Wan2.2 T2V Demo – Gradio Edition")
with gr.Row():
prompt = gr.Textbox(label="Prompt", value="Two anthropomorphic cats in comfy boxing gear fight intensely.")
negative_prompt = gr.Textbox(label="Negative Prompt", value="色调艳丽,过曝,静态,细节模糊不清,字幕,最差质量,丑陋的,多余的手指,畸形")
with gr.Row():
height = gr.Slider(360, 1024, value=720, step=16, label="Height")
width = gr.Slider(360, 1920, value=1280, step=16, label="Width")
with gr.Row():
num_frames = gr.Slider(16, 100, value=81, step=1, label="Number of Frames")
num_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps")
with gr.Row():
guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.5, label="Guidance Scale")
guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Guidance Scale 2")
generate_btn = gr.Button("Generate Video")
video_output = gr.Video(label="Generated Video")
generate_btn.click(
fn=generate_video,
inputs=[prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps],
outputs=video_output,
)
demo.launch()
|