rahul7star commited on
Commit
44ef737
·
verified ·
1 Parent(s): 4ed9c52

Update app_t2v.py

Browse files
Files changed (1) hide show
  1. app_t2v.py +55 -160
app_t2v.py CHANGED
@@ -1,174 +1,69 @@
1
- # PyTorch 2.8 (temporary hack)
2
- import os
3
- os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
4
-
5
- # Actual demo code
6
- import spaces
7
- import torch
8
- from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
9
- from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
10
- from diffusers.utils.export_utils import export_to_video
11
  import gradio as gr
 
 
 
12
  import tempfile
13
- import numpy as np
14
- from PIL import Image
15
- import random
16
-
17
- from optimization import optimize_pipeline_
18
-
19
-
20
- MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
21
-
22
- LANDSCAPE_WIDTH = 832
23
- LANDSCAPE_HEIGHT = 480
24
- MAX_SEED = np.iinfo(np.int32).max
25
-
26
- FIXED_FPS = 24
27
- MIN_FRAMES_MODEL = 8
28
- MAX_FRAMES_MODEL = 81
29
-
30
- MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
31
- MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
32
-
33
-
34
- pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
35
- transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
36
- subfolder='transformer',
37
- torch_dtype=torch.bfloat16,
38
- device_map='cuda',
39
- ),
40
- transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
41
- subfolder='transformer_2',
42
- torch_dtype=torch.bfloat16,
43
- device_map='cuda',
44
- ),
45
- torch_dtype=torch.bfloat16,
46
- ).to('cuda')
47
 
 
 
 
48
 
49
- optimize_pipeline_(pipe,
50
- image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
51
- prompt='prompt',
52
- height=LANDSCAPE_HEIGHT,
53
- width=LANDSCAPE_WIDTH,
54
- num_frames=MAX_FRAMES_MODEL,
55
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
 
 
 
57
 
58
- default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
59
- default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
60
-
61
-
62
- def resize_image(image: Image.Image) -> Image.Image:
63
- if image.height > image.width:
64
- transposed = image.transpose(Image.Transpose.ROTATE_90)
65
- resized = resize_image_landscape(transposed)
66
- return resized.transpose(Image.Transpose.ROTATE_270)
67
- return resize_image_landscape(image)
68
-
69
-
70
- def resize_image_landscape(image: Image.Image) -> Image.Image:
71
- target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
72
- width, height = image.size
73
- in_aspect = width / height
74
- if in_aspect > target_aspect:
75
- new_width = round(height * target_aspect)
76
- left = (width - new_width) // 2
77
- image = image.crop((left, 0, left + new_width, height))
78
- else:
79
- new_height = round(width / target_aspect)
80
- top = (height - new_height) // 2
81
- image = image.crop((0, top, width, top + new_height))
82
- return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
83
-
84
- def get_duration(
85
- input_image,
86
- prompt,
87
- negative_prompt,
88
- duration_seconds,
89
- guidance_scale,
90
- steps,
91
- seed,
92
- randomize_seed,
93
- progress,
94
- ):
95
- return steps * 15
96
-
97
- @spaces.GPU(duration=get_duration)
98
- def generate_video(
99
- input_image,
100
- prompt,
101
- negative_prompt=default_negative_prompt,
102
- duration_seconds = MAX_DURATION,
103
- guidance_scale = 1,
104
- steps = 4,
105
- seed = 42,
106
- randomize_seed = False,
107
- progress=gr.Progress(track_tqdm=True),
108
- ):
109
-
110
- if input_image is None:
111
- raise gr.Error("Please upload an input image.")
112
-
113
- num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
114
- current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
115
- resized_image = resize_image(input_image)
116
-
117
- output_frames_list = pipe(
118
- image=None,
119
- prompt=prompt,
120
- negative_prompt=negative_prompt,
121
- height=resized_image.height,
122
- width=resized_image.width,
123
- num_frames=num_frames,
124
- guidance_scale=float(guidance_scale),
125
- num_inference_steps=int(steps),
126
- generator=torch.Generator(device="cuda").manual_seed(current_seed),
127
- ).frames[0]
128
-
129
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
130
- video_path = tmpfile.name
131
-
132
- export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
133
 
134
- return video_path, current_seed
 
 
135
 
136
- with gr.Blocks() as demo:
137
- gr.Markdown("# Wan2.2-T2V-A14B AND I2V Testing")
138
- #gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
139
  with gr.Row():
140
- with gr.Column():
141
- input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
142
- prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
143
- duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
144
-
145
- with gr.Accordion("Advanced Settings", open=False):
146
- negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
147
- seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
148
- randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
149
- steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=35, label="Inference Steps")
150
- guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
151
 
152
- generate_button = gr.Button("Generate Video", variant="primary")
153
- with gr.Column():
154
- video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
155
-
156
- ui_inputs = [
157
- input_image_component, prompt_input,
158
- negative_prompt_input, duration_seconds_input,
159
- guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
160
- ]
161
- generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
162
 
163
- gr.Examples(
164
- examples=[
165
- [
166
- "wan_i2v_input.JPG",
167
- "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
168
- ],
169
- ],
170
- inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
171
  )
172
 
173
- if __name__ == "__main__":
174
- demo.queue().launch(mcp_server=True)
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from diffusers import WanPipeline, AutoencoderKLWan
4
+ from diffusers.utils import export_to_video
5
  import tempfile
6
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ # Setup
9
+ dtype = torch.bfloat16
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
+ # Load model and VAE once
13
+ vae = AutoencoderKLWan.from_pretrained(
14
+ "Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32
 
 
 
15
  )
16
+ pipe = WanPipeline.from_pretrained(
17
+ "Wan-AI/Wan2.2-T2V-A14B-Diffusers", vae=vae, torch_dtype=dtype
18
+ )
19
+ pipe.to(device)
20
+
21
+ # Core inference function
22
+ def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps):
23
+ with torch.autocast("cuda", dtype=dtype):
24
+ output = pipe(
25
+ prompt=prompt,
26
+ negative_prompt=negative_prompt,
27
+ height=height,
28
+ width=width,
29
+ num_frames=num_frames,
30
+ guidance_scale=guidance_scale,
31
+ guidance_scale_2=guidance_scale_2,
32
+ num_inference_steps=num_steps,
33
+ ).frames[0]
34
+
35
+ temp_dir = tempfile.mkdtemp()
36
+ video_path = os.path.join(temp_dir, "output.mp4")
37
+ export_to_video(output, video_path, fps=16)
38
+ return video_path
39
+
40
+ # Gradio UI
41
+ with gr.Blocks() as demo:
42
+ gr.Markdown("## 🐾 Wan2.2 T2V Demo – Gradio Edition")
43
 
44
+ with gr.Row():
45
+ prompt = gr.Textbox(label="Prompt", value="Two anthropomorphic cats in comfy boxing gear fight intensely.")
46
+ negative_prompt = gr.Textbox(label="Negative Prompt", value="色调艳丽,过曝,静态,细节模糊不清,字幕,最差质量,丑陋的,多余的手指,畸形")
47
 
48
+ with gr.Row():
49
+ height = gr.Slider(360, 1024, value=720, step=16, label="Height")
50
+ width = gr.Slider(360, 1920, value=1280, step=16, label="Width")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ with gr.Row():
53
+ num_frames = gr.Slider(16, 100, value=81, step=1, label="Number of Frames")
54
+ num_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps")
55
 
 
 
 
56
  with gr.Row():
57
+ guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.5, label="Guidance Scale")
58
+ guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Guidance Scale 2")
 
 
 
 
 
 
 
 
 
59
 
60
+ generate_btn = gr.Button("Generate Video")
61
+ video_output = gr.Video(label="Generated Video")
 
 
 
 
 
 
 
 
62
 
63
+ generate_btn.click(
64
+ fn=generate_video,
65
+ inputs=[prompt, negative_prompt, height, width, num_frames, guidance_scale, guidance_scale_2, num_steps],
66
+ outputs=video_output,
 
 
 
 
67
  )
68
 
69
+ demo.launch()