Spaces:
Sleeping
Sleeping
File size: 6,766 Bytes
b7192a3 7b1d8c1 17b8f9b 7b1d8c1 17b8f9b 7b1d8c1 c1ae0da 7b1d8c1 b7192a3 7b1d8c1 b7192a3 7b1d8c1 b7192a3 7b1d8c1 0d41bf4 b7192a3 7b1d8c1 b7192a3 0d41bf4 b7192a3 17b8f9b 7b1d8c1 17b8f9b 7b1d8c1 b7192a3 7b1d8c1 b7192a3 7b1d8c1 0d41bf4 7b1d8c1 17b8f9b 7b1d8c1 17b8f9b 7b1d8c1 0d41bf4 7b1d8c1 17b8f9b 7b1d8c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
from PIL import Image
from phi.agent import Agent
from phi.model.google import Gemini
from phi.tools.firecrawl import FirecrawlTools
import google.generativeai as genai
from google.generativeai import upload_file,get_file
import io
import base64
import time
from pathlib import Path
import tempfile
from dotenv import load_dotenv
load_dotenv()
import os
API_KEY = os.getenv("GOOGLE_API_KEY")
if API_KEY:
genai.configure(api_key=API_KEY)
# Page Configuration
st.set_page_config(
page_title="AI Shopping Partner",
page_icon="🤖🛍️",
layout="centered"
)
st.title("AI Shopping Partner")
st.header("Powered by Agno and Google Gemini")
#st.cache_resource
def get_gemini_response(api_key,prompt,image):
model=genai.GenerativeModel(model_name="gemini-2.0-flash-exp")
response= model.generate_content([prompt,image])
return response.text
def initialize_agent():
return Agent(
name="Shopping Partner",
model=Gemini(id="gemini-2.0-flash-exp"),
instructions=[
"You are a product recommender agent specializing in finding products that match user preferences.",
"Prioritize finding products that satisfy as many user requirements as possible, but ensure a minimum match of 50%.",
"Search for products only from authentic and trusted e-commerce websites such as Google Shopping, Amazon, Flipkart, Myntra, Meesho, Nike, and other reputable platforms.",
"Verify that each product recommendation is in stock and available for purchase.",
"Avoid suggesting counterfeit or unverified products.",
"Clearly mention the key attributes of each product (e.g., price, brand, features) in the response.",
"Format the recommendations neatly and ensure clarity for ease of user understanding.",
],
tools=[FirecrawlTools()],
markdown=True
)
#Initialize the Agent
multimodal_Agent = initialize_agent()
# Define acceptable file types and MIME types
accepted_mime_types = ["image/jpeg", "image/png"]
#File Uploader
image_file = st.file_uploader("Upload a image File to Analyse and provide relevant shopping links",type=["jpg","jpeg","png"],help="Upload max 200mb image for AI Analysis")
image= None
#Prompt
prompt= "What is in this photo?"
if image_file is not None:
# Convert the uploaded file into a BytesIO stream
#image_stream = io.BytesIO(image_file.read())
image = Image.open(image_file)
try:
# Open the image using PIL
#image = Image.open(image_stream)
# Display the image in Streamlit
st.image(image, caption="Uploaded Image", use_container_width=False,width=400)
with st.spinner("AI is processing this image and gathering insights..."):
response= get_gemini_response(API_KEY,prompt,image)
st.write(f"Product Identified using AI: {response}")
except Exception as e:
st.error(f"Error: Unable to open image. {e}")
# Specify the mime_type if Streamlit cannot auto-detect
#mime_type = image_file.type
#if mime_type:
#st.write(f"File MIME type detected: {mime_type}")
# Proceed with file processing
#else:
#st.error("Could not determine MIME type for the uploaded file. Please upload a valid file.")
#if mime_type in accepted_mime_types:
#st.write(f"File uploaded: {image_file.name}")
# Process the file as needed
#else:
#st.error(f"Unsupported file type: {mime_type}")
#prompt= st.text_input("Input prompt(e.g., 'What is in this photo?'):",key="input")
promptColor= st.text_input("'What Color you are looking for?'",key="inputcolor")
promptPurpose= st.text_input("'For what purpose you are looking for this product?'",key="inputpurpose")
promptBudget= st.text_input("'What is your budget?'",key="inputbudget")
user_query= st.text_area("What specific insights are you looking for from the image?",
placeholder="Ask any questions related to the image content. The AI agent will analyze and gather more context if necessary",
help="Share the specific questions or details you want to explore from the image."
)
if st.button("Search this Product",key="analyse_image_button"):
if not user_query:
st.warning("Please enter a query to analyse this image")
else:
try:
with st.spinner("AI is Processing this image and gathering insights..."):
#Upload and process the video file
#processed_image = upload_file(image_path)
#st.write(f"processed_image: {processed_image}")
response= get_gemini_response(API_KEY,prompt,image)
#st.write(f"Product Identified: {response}")
#Prompt generation for Analysis
analysis_prompt =(
f"""
I am looking for
{response}
with the below preferences:
{promptColor}
{promptPurpose}
{promptBudget}
Can you provide recommendations. Always make sure that you provide hyperlinks to the product.
{user_query}
"""
)
#AI Agent Processing
response = multimodal_Agent.run(analysis_prompt,image=image)
# multimodal_Agent.print_response(
# "I am looking for running shoes with the following preferences: Color: Black Purpose: Comfortable for long-distance running Budget: Under Rs. 10,000. Can you provide recommendations. Also provide links to the product. Search in Myntra"
# )
#Display the result
st.subheader("Relevant search links for the product")
st.markdown(response.content)
#st.write(response)
except Exception as error:
st.error(f"An error occured during analysis:{error}")
finally:
#Clean up temporary video file
# Path(image_path).unlink(missing_ok=True)
st.info("Clean up temporary image file")
#else:
#st.info("Upload a image file to start the Analysis")
#Customize text area height
st.markdown(
"""
<style>
.stTextArea textarea{
height:100px;
}
</style>
""",
unsafe_allow_html=True
) |