Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from phi.agent import Agent
|
4 |
+
from phi.model.google import Gemini
|
5 |
+
from phi.tools.firecrawl import FirecrawlTools
|
6 |
+
import google.generativeai as genai
|
7 |
+
from google.generativeai import upload_file,get_file
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
|
11 |
+
import time
|
12 |
+
from pathlib import Path
|
13 |
+
import tempfile
|
14 |
+
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
import os
|
19 |
+
|
20 |
+
API_KEY = os.getenv("GOOGLE_API_KEY")
|
21 |
+
if API_KEY:
|
22 |
+
genai.configure(api_key=API_KEY)
|
23 |
+
|
24 |
+
# Page Configuration
|
25 |
+
|
26 |
+
st.set_page_config(
|
27 |
+
page_title="AI Shopping Partner",
|
28 |
+
page_icon="🤖🛍️",
|
29 |
+
layout="centered"
|
30 |
+
)
|
31 |
+
|
32 |
+
st.title("AI Shopping Partner")
|
33 |
+
st.header("Powered by Agno and Google Gemini")
|
34 |
+
#st.cache_resource
|
35 |
+
|
36 |
+
def get_gemini_response(api_key,prompt,image):
|
37 |
+
model=genai.GenerativeModel(model_name="gemini-2.0-flash-exp")
|
38 |
+
response= model.generate_content([prompt,image])
|
39 |
+
return response.text
|
40 |
+
|
41 |
+
def initialize_agent():
|
42 |
+
return Agent(
|
43 |
+
|
44 |
+
name="Shopping Partner",
|
45 |
+
model=Gemini(id="gemini-2.0-flash-exp"),
|
46 |
+
instructions=[
|
47 |
+
"You are a product recommender agent specializing in finding products that match user preferences.",
|
48 |
+
"Prioritize finding products that satisfy as many user requirements as possible, but ensure a minimum match of 50%.",
|
49 |
+
"Search for products only from authentic and trusted e-commerce websites such as Google Shopping, Amazon, Flipkart, Myntra, Meesho, Nike, and other reputable platforms.",
|
50 |
+
"Verify that each product recommendation is in stock and available for purchase.",
|
51 |
+
"Avoid suggesting counterfeit or unverified products.",
|
52 |
+
"Clearly mention the key attributes of each product (e.g., price, brand, features) in the response.",
|
53 |
+
"Format the recommendations neatly and ensure clarity for ease of user understanding.",
|
54 |
+
],
|
55 |
+
tools=[FirecrawlTools()],
|
56 |
+
markdown=True
|
57 |
+
)
|
58 |
+
|
59 |
+
#Initialize the Agent
|
60 |
+
multimodal_Agent = initialize_agent()
|
61 |
+
|
62 |
+
# Define acceptable file types and MIME types
|
63 |
+
accepted_mime_types = ["image/jpeg", "image/png"]
|
64 |
+
|
65 |
+
#File Uploader
|
66 |
+
image_file = st.file_uploader("Upload a image File to Analyse and provide relevant shopping links",type=["jpg","jpeg","png"],help="Upload max 200mb image for AI Analysis")
|
67 |
+
image= None
|
68 |
+
|
69 |
+
#Prompt
|
70 |
+
prompt= "What is in this photo?"
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
if image_file is not None:
|
75 |
+
# Convert the uploaded file into a BytesIO stream
|
76 |
+
#image_stream = io.BytesIO(image_file.read())
|
77 |
+
image = Image.open(image_file)
|
78 |
+
|
79 |
+
try:
|
80 |
+
# Open the image using PIL
|
81 |
+
#image = Image.open(image_stream)
|
82 |
+
|
83 |
+
# Display the image in Streamlit
|
84 |
+
st.image(image, caption="Uploaded Image", use_container_width=False,width=400)
|
85 |
+
with st.spinner("AI is processing this image and gathering insights..."):
|
86 |
+
response= get_gemini_response(API_KEY,prompt,image)
|
87 |
+
st.write(f"Product Identified using AI: {response}")
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"Error: Unable to open image. {e}")
|
91 |
+
|
92 |
+
# Specify the mime_type if Streamlit cannot auto-detect
|
93 |
+
#mime_type = image_file.type
|
94 |
+
|
95 |
+
#if mime_type:
|
96 |
+
#st.write(f"File MIME type detected: {mime_type}")
|
97 |
+
# Proceed with file processing
|
98 |
+
#else:
|
99 |
+
#st.error("Could not determine MIME type for the uploaded file. Please upload a valid file.")
|
100 |
+
|
101 |
+
#if mime_type in accepted_mime_types:
|
102 |
+
#st.write(f"File uploaded: {image_file.name}")
|
103 |
+
# Process the file as needed
|
104 |
+
#else:
|
105 |
+
#st.error(f"Unsupported file type: {mime_type}")
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
#prompt= st.text_input("Input prompt(e.g., 'What is in this photo?'):",key="input")
|
110 |
+
promptColor= st.text_input("'What Color you are looking for?'",key="inputcolor")
|
111 |
+
promptPurpose= st.text_input("'For what purpose you are looking for this product?'",key="inputpurpose")
|
112 |
+
promptBudget= st.text_input("'What is your budget?'",key="inputbudget")
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
user_query= st.text_area("What specific insights are you looking for from the image?",
|
117 |
+
placeholder="Ask any questions related to the image content. The AI agent will analyze and gather more context if necessary",
|
118 |
+
help="Share the specific questions or details you want to explore from the image."
|
119 |
+
)
|
120 |
+
|
121 |
+
if st.button("Search this Product",key="analyse_image_button"):
|
122 |
+
if not user_query:
|
123 |
+
st.warning("Please enter a query to analyse this image")
|
124 |
+
else:
|
125 |
+
try:
|
126 |
+
with st.spinner("AI is Processing this image and gathering insights..."):
|
127 |
+
|
128 |
+
#Upload and process the video file
|
129 |
+
#processed_image = upload_file(image_path)
|
130 |
+
#st.write(f"processed_image: {processed_image}")
|
131 |
+
|
132 |
+
response= get_gemini_response(API_KEY,prompt,image)
|
133 |
+
#st.write(f"Product Identified: {response}")
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
#Prompt generation for Analysis
|
138 |
+
analysis_prompt =(
|
139 |
+
f"""
|
140 |
+
I am looking for
|
141 |
+
{response}
|
142 |
+
with the below preferences:
|
143 |
+
{promptColor}
|
144 |
+
{promptPurpose}
|
145 |
+
{promptBudget}
|
146 |
+
Can you provide recommendations. Always make sure that you provide hyperlinks to the product.
|
147 |
+
{user_query}
|
148 |
+
"""
|
149 |
+
)
|
150 |
+
|
151 |
+
#AI Agent Processing
|
152 |
+
response = multimodal_Agent.run(analysis_prompt,image=image)
|
153 |
+
|
154 |
+
# multimodal_Agent.print_response(
|
155 |
+
# "I am looking for running shoes with the following preferences: Color: Black Purpose: Comfortable for long-distance running Budget: Under Rs. 10,000. Can you provide recommendations. Also provide links to the product. Search in Myntra"
|
156 |
+
# )
|
157 |
+
|
158 |
+
#Display the result
|
159 |
+
st.subheader("Relevant search links for the product")
|
160 |
+
st.markdown(response.content)
|
161 |
+
#st.write(response)
|
162 |
+
|
163 |
+
except Exception as error:
|
164 |
+
st.error(f"An error occured during analysis:{error}")
|
165 |
+
finally:
|
166 |
+
#Clean up temporary video file
|
167 |
+
# Path(image_path).unlink(missing_ok=True)
|
168 |
+
st.info("Clean up temporary image file")
|
169 |
+
#else:
|
170 |
+
#st.info("Upload a image file to start the Analysis")
|
171 |
+
|
172 |
+
#Customize text area height
|
173 |
+
st.markdown(
|
174 |
+
"""
|
175 |
+
<style>
|
176 |
+
.stTextArea textarea{
|
177 |
+
height:100px;
|
178 |
+
}
|
179 |
+
</style>
|
180 |
+
""",
|
181 |
+
unsafe_allow_html=True
|
182 |
+
|
183 |
+
)
|