Akshayram1's picture
Update app.py
f4d0320 verified
raw
history blame
6.56 kB
import streamlit as st
from transformers import pipeline
import google.generativeai as genai
from pytube import Search
import speech_recognition as sr
import tempfile
from audio_recorder_streamlit import audio_recorder
import numpy as np
import wave
import io
import logging
# Set up logging
logging.basicConfig(level=logging.DEBUG)
# Load sentiment analysis model using PyTorch backend
mood_classifier = pipeline("sentiment-analysis", framework="pt")
def convert_audio_to_wav(audio_bytes):
# Create a wave file in memory
wav_buffer = io.BytesIO()
with wave.open(wav_buffer, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono
wav_file.setsampwidth(2) # 2 bytes per sample
wav_file.setframerate(44100) # Sample rate
wav_file.writeframes(audio_bytes)
return wav_buffer.getvalue()
def detect_mood(text):
result = mood_classifier(text)[0]
if result['label'] == 'POSITIVE':
return "joyful"
elif result['label'] == 'NEGATIVE':
return "sad"
else:
return "neutral"
def speech_to_text():
# Initialize recognizer
r = sr.Recognizer()
# Add audio recording widget
audio_bytes = audio_recorder(
text="Click to record your mood",
recording_color="#e8b62c",
neutral_color="#6aa36f",
pause_threshold=2.0 # Automatically stop after 2 seconds of silence
)
if audio_bytes:
try:
# Create a temporary WAV file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
# Convert and write audio bytes to WAV format
wav_bytes = convert_audio_to_wav(audio_bytes)
temp_audio.write(wav_bytes)
temp_audio.flush()
# Use the temporary file for speech recognition
with sr.AudioFile(temp_audio.name) as source:
# Record the audio file
audio = r.record(source)
try:
# Attempt speech recognition
text = r.recognize_google(audio)
st.success("Speech recognized successfully!")
return text
except sr.UnknownValueError:
st.error("Could not understand the audio. Please try speaking clearly and try again.")
return None
except sr.RequestError as e:
st.error(f"Could not request results from speech recognition service; {e}")
return None
except Exception as e:
st.error(f"Error processing audio: {e}")
return None
return None
def get_song_recommendations(mood, api_key):
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-pro')
# System prompt to guide the AI
system_prompt = """
You are a music recommendation assistant specialized in Indian songs. Your task is to suggest popular Indian songs based on the user's mood.
- If the mood is "happy," suggest upbeat and joyful Bollywood or Indian pop songs.
- If the mood is "sad," suggest emotional and soulful Indian songs.
- If the mood is "energetic," suggest high-energy dance or workout songs.
- If the mood is "romantic," suggest romantic Bollywood or Indian love songs.
- If the mood is "calm," suggest soothing Indian classical or instrumental music.
Always suggest 3 songs and provide the song title and artist name in the format:
1. Song Title - Artist Name
2. Song Title - Artist Name
3. Song Title - Artist Name
"""
# User prompt
user_prompt = f"Suggest 3 popular Indian {mood} songs."
# Combine system and user prompts
response = model.generate_content([system_prompt, user_prompt])
return response.text
except Exception as e:
st.error(f"Error using Gemini API: {e}")
return None
def search_youtube(query):
search = Search(query)
return search.results[0].watch_url
# Streamlit App
st.title("🎡 Mood-Based Indian Song Player")
# Sidebar for user input
st.sidebar.header("How are you feeling today?")
mood_options = ["happy", "sad", "energetic", "romantic", "calm"]
# Input for Gemini API key
gemini_api_key = st.sidebar.text_input("Enter your Gemini API Key:", type="password")
# Add option to choose between text and speech input
input_method = st.sidebar.radio("Choose input method:", ["Text", "Speech"])
# Initialize user_mood as None
user_mood = None
user_text = None
if input_method == "Text":
# Text input
user_mood = st.sidebar.selectbox("Select your mood:", mood_options)
user_text = user_mood
else:
# Speech input
st.write("πŸ“’ Click the button below and tell me about your day...")
user_text = speech_to_text()
if user_text:
st.info(f"You said: '{user_text}'")
user_mood = detect_mood(user_text)
st.write(f"Based on what you said, I detect your mood as: **{user_mood}**")
# Playlist
if 'playlist' not in st.session_state:
st.session_state.playlist = []
# Main content
if user_text and gemini_api_key:
detected_mood = detect_mood(user_text)
st.write(f"🎭 Detected Mood: **{detected_mood}**")
st.write("🎡 Recommended Songs:")
recommendations = get_song_recommendations(detected_mood, gemini_api_key)
if recommendations:
st.write(recommendations)
song_names = recommendations.split("\n")
for song in song_names:
if song.strip():
st.write(f"πŸ” Searching for: **{song}**")
video_url = search_youtube(song)
st.video(video_url)
# Add to playlist button
if st.button(f"Add '{song}' to Playlist"):
st.session_state.playlist.append((song, video_url))
st.success(f"Added '{song}' to your playlist!")
else:
st.error("Failed to get song recommendations. Please check your API key.")
elif not gemini_api_key:
st.warning("Please enter your Gemini API key to get started.")
# Display the playlist
st.sidebar.header("Your Playlist")
for idx, (song, url) in enumerate(st.session_state.playlist):
st.sidebar.write(f"{idx + 1}. {song}")
if st.sidebar.button(f"Play {song}", key=f"play_{idx}"):
st.video(url)