|
import streamlit as st |
|
from transformers import pipeline |
|
import google.generativeai as genai |
|
from pytube import Search |
|
import speech_recognition as sr |
|
import tempfile |
|
from audio_recorder_streamlit import audio_recorder |
|
import numpy as np |
|
import wave |
|
import io |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
|
|
mood_classifier = pipeline("sentiment-analysis", framework="pt") |
|
|
|
def convert_audio_to_wav(audio_bytes): |
|
|
|
wav_buffer = io.BytesIO() |
|
|
|
with wave.open(wav_buffer, 'wb') as wav_file: |
|
wav_file.setnchannels(1) |
|
wav_file.setsampwidth(2) |
|
wav_file.setframerate(44100) |
|
wav_file.writeframes(audio_bytes) |
|
|
|
return wav_buffer.getvalue() |
|
|
|
def detect_mood(text): |
|
result = mood_classifier(text)[0] |
|
if result['label'] == 'POSITIVE': |
|
return "joyful" |
|
elif result['label'] == 'NEGATIVE': |
|
return "sad" |
|
else: |
|
return "neutral" |
|
|
|
def speech_to_text(): |
|
|
|
r = sr.Recognizer() |
|
|
|
|
|
audio_bytes = audio_recorder( |
|
text="Click to record your mood", |
|
recording_color="#e8b62c", |
|
neutral_color="#6aa36f", |
|
pause_threshold=2.0 |
|
) |
|
|
|
if audio_bytes: |
|
try: |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: |
|
|
|
wav_bytes = convert_audio_to_wav(audio_bytes) |
|
temp_audio.write(wav_bytes) |
|
temp_audio.flush() |
|
|
|
|
|
with sr.AudioFile(temp_audio.name) as source: |
|
|
|
audio = r.record(source) |
|
|
|
try: |
|
|
|
text = r.recognize_google(audio) |
|
st.success("Speech recognized successfully!") |
|
return text |
|
except sr.UnknownValueError: |
|
st.error("Could not understand the audio. Please try speaking clearly and try again.") |
|
return None |
|
except sr.RequestError as e: |
|
st.error(f"Could not request results from speech recognition service; {e}") |
|
return None |
|
except Exception as e: |
|
st.error(f"Error processing audio: {e}") |
|
return None |
|
return None |
|
|
|
def get_song_recommendations(mood, api_key): |
|
try: |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-pro') |
|
|
|
system_prompt = """ |
|
You are a music recommendation assistant specialized in Indian songs. Your task is to suggest popular Indian songs based on the user's mood. |
|
- If the mood is "happy," suggest upbeat and joyful Bollywood or Indian pop songs. |
|
- If the mood is "sad," suggest emotional and soulful Indian songs. |
|
- If the mood is "energetic," suggest high-energy dance or workout songs. |
|
- If the mood is "romantic," suggest romantic Bollywood or Indian love songs. |
|
- If the mood is "calm," suggest soothing Indian classical or instrumental music. |
|
Always suggest 3 songs and provide the song title and artist name in the format: |
|
1. Song Title - Artist Name |
|
2. Song Title - Artist Name |
|
3. Song Title - Artist Name |
|
""" |
|
|
|
|
|
user_prompt = f"Suggest 3 popular Indian {mood} songs." |
|
|
|
|
|
response = model.generate_content([system_prompt, user_prompt]) |
|
return response.text |
|
except Exception as e: |
|
st.error(f"Error using Gemini API: {e}") |
|
return None |
|
|
|
def search_youtube(query): |
|
search = Search(query) |
|
return search.results[0].watch_url |
|
|
|
|
|
st.title("π΅ Mood-Based Indian Song Player") |
|
|
|
|
|
st.sidebar.header("How are you feeling today?") |
|
mood_options = ["happy", "sad", "energetic", "romantic", "calm"] |
|
|
|
|
|
gemini_api_key = st.sidebar.text_input("Enter your Gemini API Key:", type="password") |
|
|
|
|
|
input_method = st.sidebar.radio("Choose input method:", ["Text", "Speech"]) |
|
|
|
|
|
user_mood = None |
|
user_text = None |
|
|
|
if input_method == "Text": |
|
|
|
user_mood = st.sidebar.selectbox("Select your mood:", mood_options) |
|
user_text = user_mood |
|
else: |
|
|
|
st.write("π’ Click the button below and tell me about your day...") |
|
user_text = speech_to_text() |
|
|
|
if user_text: |
|
st.info(f"You said: '{user_text}'") |
|
user_mood = detect_mood(user_text) |
|
st.write(f"Based on what you said, I detect your mood as: **{user_mood}**") |
|
|
|
|
|
if 'playlist' not in st.session_state: |
|
st.session_state.playlist = [] |
|
|
|
|
|
if user_text and gemini_api_key: |
|
detected_mood = detect_mood(user_text) |
|
st.write(f"π Detected Mood: **{detected_mood}**") |
|
|
|
st.write("π΅ Recommended Songs:") |
|
recommendations = get_song_recommendations(detected_mood, gemini_api_key) |
|
if recommendations: |
|
st.write(recommendations) |
|
|
|
song_names = recommendations.split("\n") |
|
for song in song_names: |
|
if song.strip(): |
|
st.write(f"π Searching for: **{song}**") |
|
video_url = search_youtube(song) |
|
st.video(video_url) |
|
|
|
|
|
if st.button(f"Add '{song}' to Playlist"): |
|
st.session_state.playlist.append((song, video_url)) |
|
st.success(f"Added '{song}' to your playlist!") |
|
else: |
|
st.error("Failed to get song recommendations. Please check your API key.") |
|
elif not gemini_api_key: |
|
st.warning("Please enter your Gemini API key to get started.") |
|
|
|
|
|
st.sidebar.header("Your Playlist") |
|
for idx, (song, url) in enumerate(st.session_state.playlist): |
|
st.sidebar.write(f"{idx + 1}. {song}") |
|
if st.sidebar.button(f"Play {song}", key=f"play_{idx}"): |
|
st.video(url) |