Akshayram1's picture
Update app.py
72fe4af verified
raw
history blame
5.21 kB
import os
import gradio as gr
import PIL.Image
import torch
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
# Model and Processor Setup
model_id = "google/paligemma2-3b-mix-448"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HF_KEY = os.getenv("HF_KEY")
if not HF_KEY:
raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token")
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id,
token=HF_KEY,
trust_remote_code=True
).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(
model_id,
token=HF_KEY,
trust_remote_code=True
)
# Inference Function
def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str:
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
with torch.inference_mode():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
return result[0][len(text):].lstrip("\n")
# Image Captioning
def generate_caption(image: PIL.Image.Image) -> str:
return infer(image, "caption", max_new_tokens=50)
# Object Detection
def detect_objects(image: PIL.Image.Image) -> str:
return infer(image, "detect objects", max_new_tokens=200)
# Visual Question Answering (VQA)
def vqa(image: PIL.Image.Image, question: str) -> str:
return infer(image, f"Q: {question} A:", max_new_tokens=50)
# Custom CSS for Styling
custom_css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.upload-button {
background-color: #4285f4;
color: white;
border-radius: 5px;
padding: 10px 20px;
}
.output-text {
font-size: 18px;
font-weight: bold;
}
"""
# Gradio App
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# PaliGemma Multi-Modal App")
gr.Markdown("Upload an image and explore its features using the PaliGemma model!")
with gr.Tabs():
# Tab 1: Image Captioning
with gr.Tab("Image Captioning"):
with gr.Row():
with gr.Column():
caption_image = gr.Image(type="pil", label="Upload Image", width=512, height=512)
caption_btn = gr.Button("Generate Caption", elem_classes="upload-button")
with gr.Column():
caption_output = gr.Text(label="Generated Caption", elem_classes="output-text")
caption_btn.click(fn=generate_caption, inputs=[caption_image], outputs=[caption_output])
# Tab 2: Object Detection
with gr.Tab("Object Detection"):
with gr.Row():
with gr.Column():
detect_image = gr.Image(type="pil", label="Upload Image", width=512, height=512)
detect_btn = gr.Button("Detect Objects", elem_classes="upload-button")
with gr.Column():
detect_output = gr.Text(label="Detected Objects", elem_classes="output-text")
detect_btn.click(fn=detect_objects, inputs=[detect_image], outputs=[detect_output])
# Tab 3: Visual Question Answering (VQA)
with gr.Tab("Visual Question Answering"):
with gr.Row():
with gr.Column():
vqa_image = gr.Image(type="pil", label="Upload Image", width=512, height=512)
vqa_question = gr.Text(label="Ask a Question", placeholder="What is in the image?")
vqa_btn = gr.Button("Ask", elem_classes="upload-button")
with gr.Column():
vqa_output = gr.Text(label="Answer", elem_classes="output-text")
vqa_btn.click(fn=vqa, inputs=[vqa_image, vqa_question], outputs=[vqa_output])
# Tab 4: Text Generation (Original Feature)
with gr.Tab("Text Generation"):
with gr.Row():
with gr.Column():
text_image = gr.Image(type="pil", label="Upload Image", width=512, height=512)
text_input = gr.Text(label="Input Text", placeholder="Describe the image...")
text_btn = gr.Button("Generate Text", elem_classes="upload-button")
with gr.Column():
text_output = gr.Text(label="Generated Text", elem_classes="output-text")
text_btn.click(fn=infer, inputs=[text_image, text_input, gr.Slider(10, 200, value=50)], outputs=[text_output])
# Image Upload/Download
with gr.Row():
upload_button = gr.UploadButton("Upload Image", file_types=["image"], elem_classes="upload-button")
download_button = gr.DownloadButton("Download Results", elem_classes="upload-button")
# Real-Time Updates
caption_image.change(fn=generate_caption, inputs=[caption_image], outputs=[caption_output], live=True)
detect_image.change(fn=detect_objects, inputs=[detect_image], outputs=[detect_output], live=True)
vqa_image.change(fn=lambda x: vqa(x, "What is in the image?"), inputs=[vqa_image], outputs=[vqa_output], live=True)
# Launch the App
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)