Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
# Model and Processor Setup | |
model_id = "google/paligemma2-3b-mix-448" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
HF_KEY = os.getenv("HF_KEY") | |
if not HF_KEY: | |
raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token") | |
model = PaliGemmaForConditionalGeneration.from_pretrained( | |
model_id, | |
token=HF_KEY, | |
trust_remote_code=True | |
).eval().to(device) | |
processor = PaliGemmaProcessor.from_pretrained( | |
model_id, | |
token=HF_KEY, | |
trust_remote_code=True | |
) | |
# Inference Function | |
def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str: | |
inputs = processor(text=text, images=image, return_tensors="pt").to(device) | |
with torch.inference_mode(): | |
generated_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False | |
) | |
result = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
return result[0][len(text):].lstrip("\n") | |
# Image Captioning | |
def generate_caption(image: PIL.Image.Image) -> str: | |
return infer(image, "caption", max_new_tokens=50) | |
# Object Detection | |
def detect_objects(image: PIL.Image.Image) -> str: | |
return infer(image, "detect objects", max_new_tokens=200) | |
# Visual Question Answering (VQA) | |
def vqa(image: PIL.Image.Image, question: str) -> str: | |
return infer(image, f"Q: {question} A:", max_new_tokens=50) | |
# Custom CSS for Styling | |
custom_css = """ | |
.gradio-container { | |
font-family: 'Arial', sans-serif; | |
} | |
.upload-button { | |
background-color: #4285f4; | |
color: white; | |
border-radius: 5px; | |
padding: 10px 20px; | |
} | |
.output-text { | |
font-size: 18px; | |
font-weight: bold; | |
} | |
""" | |
# Gradio App | |
with gr.Blocks(css=custom_css) as demo: | |
gr.Markdown("# PaliGemma Multi-Modal App") | |
gr.Markdown("Upload an image and explore its features using the PaliGemma model!") | |
with gr.Tabs(): | |
# Tab 1: Image Captioning | |
with gr.Tab("Image Captioning"): | |
with gr.Row(): | |
with gr.Column(): | |
caption_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
caption_btn = gr.Button("Generate Caption", elem_classes="upload-button") | |
with gr.Column(): | |
caption_output = gr.Text(label="Generated Caption", elem_classes="output-text") | |
caption_btn.click(fn=generate_caption, inputs=[caption_image], outputs=[caption_output]) | |
# Tab 2: Object Detection | |
with gr.Tab("Object Detection"): | |
with gr.Row(): | |
with gr.Column(): | |
detect_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
detect_btn = gr.Button("Detect Objects", elem_classes="upload-button") | |
with gr.Column(): | |
detect_output = gr.Text(label="Detected Objects", elem_classes="output-text") | |
detect_btn.click(fn=detect_objects, inputs=[detect_image], outputs=[detect_output]) | |
# Tab 3: Visual Question Answering (VQA) | |
with gr.Tab("Visual Question Answering"): | |
with gr.Row(): | |
with gr.Column(): | |
vqa_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
vqa_question = gr.Text(label="Ask a Question", placeholder="What is in the image?") | |
vqa_btn = gr.Button("Ask", elem_classes="upload-button") | |
with gr.Column(): | |
vqa_output = gr.Text(label="Answer", elem_classes="output-text") | |
vqa_btn.click(fn=vqa, inputs=[vqa_image, vqa_question], outputs=[vqa_output]) | |
# Tab 4: Text Generation (Original Feature) | |
with gr.Tab("Text Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
text_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
text_input = gr.Text(label="Input Text", placeholder="Describe the image...") | |
text_btn = gr.Button("Generate Text", elem_classes="upload-button") | |
with gr.Column(): | |
text_output = gr.Text(label="Generated Text", elem_classes="output-text") | |
text_btn.click(fn=infer, inputs=[text_image, text_input, gr.Slider(10, 200, value=50)], outputs=[text_output]) | |
# Image Upload/Download | |
with gr.Row(): | |
upload_button = gr.UploadButton("Upload Image", file_types=["image"], elem_classes="upload-button") | |
download_button = gr.DownloadButton("Download Results", elem_classes="upload-button") | |
# Real-Time Updates | |
caption_image.change(fn=generate_caption, inputs=[caption_image], outputs=[caption_output], live=True) | |
detect_image.change(fn=detect_objects, inputs=[detect_image], outputs=[detect_output], live=True) | |
vqa_image.change(fn=lambda x: vqa(x, "What is in the image?"), inputs=[vqa_image], outputs=[vqa_output], live=True) | |
# Launch the App | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) |