import os import gradio as gr import PIL.Image import torch from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor # Model and Processor Setup model_id = "google/paligemma2-3b-mix-448" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") HF_KEY = os.getenv("HF_KEY") if not HF_KEY: raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token") model = PaliGemmaForConditionalGeneration.from_pretrained( model_id, token=HF_KEY, trust_remote_code=True ).eval().to(device) processor = PaliGemmaProcessor.from_pretrained( model_id, token=HF_KEY, trust_remote_code=True ) # Inference Function def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str: inputs = processor(text=text, images=image, return_tensors="pt").to(device) with torch.inference_mode(): generated_ids = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=False ) result = processor.batch_decode(generated_ids, skip_special_tokens=True) return result[0][len(text):].lstrip("\n") # Image Captioning def generate_caption(image: PIL.Image.Image) -> str: return infer(image, "caption", max_new_tokens=50) # Object Detection def detect_objects(image: PIL.Image.Image) -> str: return infer(image, "detect objects", max_new_tokens=200) # Visual Question Answering (VQA) def vqa(image: PIL.Image.Image, question: str) -> str: return infer(image, f"Q: {question} A:", max_new_tokens=50) # Custom CSS for Styling custom_css = """ .gradio-container { font-family: 'Arial', sans-serif; } .upload-button { background-color: #4285f4; color: white; border-radius: 5px; padding: 10px 20px; } .output-text { font-size: 18px; font-weight: bold; } """ # Gradio App with gr.Blocks(css=custom_css) as demo: gr.Markdown("# PaliGemma Multi-Modal App") gr.Markdown("Upload an image and explore its features using the PaliGemma model!") with gr.Tabs(): # Tab 1: Image Captioning with gr.Tab("Image Captioning"): with gr.Row(): with gr.Column(): caption_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) caption_btn = gr.Button("Generate Caption", elem_classes="upload-button") with gr.Column(): caption_output = gr.Text(label="Generated Caption", elem_classes="output-text") caption_btn.click(fn=generate_caption, inputs=[caption_image], outputs=[caption_output]) # Tab 2: Object Detection with gr.Tab("Object Detection"): with gr.Row(): with gr.Column(): detect_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) detect_btn = gr.Button("Detect Objects", elem_classes="upload-button") with gr.Column(): detect_output = gr.Text(label="Detected Objects", elem_classes="output-text") detect_btn.click(fn=detect_objects, inputs=[detect_image], outputs=[detect_output]) # Tab 3: Visual Question Answering (VQA) with gr.Tab("Visual Question Answering"): with gr.Row(): with gr.Column(): vqa_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) vqa_question = gr.Text(label="Ask a Question", placeholder="What is in the image?") vqa_btn = gr.Button("Ask", elem_classes="upload-button") with gr.Column(): vqa_output = gr.Text(label="Answer", elem_classes="output-text") vqa_btn.click(fn=vqa, inputs=[vqa_image, vqa_question], outputs=[vqa_output]) # Tab 4: Text Generation (Original Feature) with gr.Tab("Text Generation"): with gr.Row(): with gr.Column(): text_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) text_input = gr.Text(label="Input Text", placeholder="Describe the image...") text_btn = gr.Button("Generate Text", elem_classes="upload-button") with gr.Column(): text_output = gr.Text(label="Generated Text", elem_classes="output-text") text_btn.click(fn=infer, inputs=[text_image, text_input, gr.Slider(10, 200, value=50)], outputs=[text_output]) # Image Upload/Download with gr.Row(): upload_button = gr.UploadButton("Upload Image", file_types=["image"], elem_classes="upload-button") download_button = gr.DownloadButton("Download Results", elem_classes="upload-button") # Real-Time Updates caption_image.change(fn=generate_caption, inputs=[caption_image], outputs=[caption_output], live=True) detect_image.change(fn=detect_objects, inputs=[detect_image], outputs=[detect_output], live=True) vqa_image.change(fn=lambda x: vqa(x, "What is in the image?"), inputs=[vqa_image], outputs=[vqa_output], live=True) # Launch the App if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)