Spaces:
Sleeping
Sleeping
import streamlit as st | |
import google.generativeai as genai | |
from dotenv import load_dotenv | |
import os | |
import json | |
# Load environment variables | |
load_dotenv() | |
# Configure Gemini | |
genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
model = genai.GenerativeModel('gemini-pro') | |
# Load questionnaire from JSON | |
def load_questionnaire(): | |
with open('assets/questionnaire.json', 'r') as f: | |
return json.load(f) | |
# Render questions based on type | |
def render_question(question): | |
question_type = question.get("type") | |
if question_type == "slider": | |
return st.slider( | |
question["question"], | |
min_value=question.get("min", 1), | |
max_value=question.get("max", 10), | |
value=question.get("default", 5) | |
) | |
elif question_type == "select_slider": | |
return st.select_slider( | |
question["question"], | |
options=question["options"], | |
value=question.get("default") | |
) | |
elif question_type == "radio": | |
return st.radio( | |
question["question"], | |
options=question["options"] | |
) | |
elif question_type == "select": | |
return st.selectbox( | |
question["question"], | |
options=question["options"] | |
) | |
elif question_type == "multiselect": | |
return st.multiselect( | |
question["question"], | |
options=question["options"] | |
) | |
elif question_type == "number": | |
return st.number_input( | |
question["question"], | |
min_value=question.get("min", 0), | |
max_value=question.get("max", 24), | |
value=question.get("default", 4) | |
) | |
else: | |
st.warning(f"Unsupported question type: {question_type}") | |
return None | |
# Main function | |
def main(): | |
st.title("JEE SOCA Analysis System π") | |
st.subheader("AI-Powered Skill Assessment for JEE Aspirants") | |
# Load questionnaire | |
questionnaire = load_questionnaire() | |
# Collect responses | |
responses = {} | |
with st.form("student_form"): | |
st.header("Student Questionnaire") | |
# Render questions from JSON | |
for section in questionnaire["questionnaire"]: | |
st.subheader(f"π {section['section']}") | |
for question in section["questions"]: | |
response = render_question(question) | |
if response is not None: | |
responses[question["question"]] = response | |
# Submit button | |
submitted = st.form_submit_button("Generate SOCA Analysis") | |
if submitted: | |
with st.spinner("Analyzing responses..."): | |
# Prepare prompt for Gemini | |
prompt = "Analyze this JEE student's profile and create a SOCA analysis:\n\n" | |
for question, response in responses.items(): | |
prompt += f"- {question}: {response}\n" | |
prompt += """ | |
Provide the analysis in this format: | |
**Strengths:** [Identify 3 key strengths] | |
**Opportunities:** [Suggest 3 improvement areas] | |
**Challenges:** [List 3 main challenges] | |
**Action Plan:** [Create 4 actionable steps] | |
""" | |
# Get Gemini response | |
try: | |
response = model.generate_content(prompt) | |
st.subheader("SOCA Analysis Report") | |
st.markdown(response.text) | |
except Exception as e: | |
st.error(f"An error occurred while generating the analysis: {e}") | |
# Run the app | |
if __name__ == "__main__": | |
main() |