Akshayram1 commited on
Commit
54ba8cb
Β·
verified Β·
1 Parent(s): 7b2799b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -45
app.py CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
2
  import google.generativeai as genai
3
  from dotenv import load_dotenv
4
  import os
 
5
 
6
  # Load environment variables
7
  load_dotenv()
@@ -10,59 +11,85 @@ load_dotenv()
10
  genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
11
  model = genai.GenerativeModel('gemini-pro')
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  def main():
14
  st.title("JEE SOCA Analysis System πŸš€")
15
  st.subheader("AI-Powered Skill Assessment for JEE Aspirants")
16
 
 
 
 
 
 
17
  with st.form("student_form"):
18
  st.header("Student Questionnaire")
19
 
20
- # Subject Knowledge
21
- st.subheader("πŸ“š Subject Knowledge")
22
- math_score = st.slider("Mathematics Proficiency (1-10)", 1, 10)
23
- physics_score = st.slider("Physics Proficiency (1-10)", 1, 10)
24
- chemistry_score = st.slider("Chemistry Proficiency (1-10)", 1, 10)
25
-
26
- # Study Habits
27
- st.subheader("⏰ Study Habits")
28
- study_hours = st.number_input("Daily Study Hours", min_value=0, max_value=16)
29
- time_management = st.select_slider("Time Management Skills",
30
- options=["Poor", "Average", "Good", "Excellent"])
31
-
32
- # Problem Solving
33
- st.subheader("πŸ” Problem Solving")
34
- problem_approach = st.radio("Preferred Problem Solving Approach",
35
- ("Conceptual Understanding",
36
- "Formula Memorization",
37
- "Practice Problems"))
38
 
39
- # Stress Management
40
- st.subheader("🧘 Stress Management")
41
- stress_level = st.select_slider("Stress Level",
42
- options=["Very Low", "Low", "Moderate", "High", "Very High"])
43
-
44
- # Submission
45
  submitted = st.form_submit_button("Generate SOCA Analysis")
46
 
47
  if submitted:
48
  with st.spinner("Analyzing responses..."):
49
- # Prepare prompt
50
- prompt = f"""Analyze this JEE student's profile and create a SOCA analysis:
51
- Subject Scores:
52
- - Mathematics: {math_score}/10
53
- - Physics: {physics_score}/10
54
- - Chemistry: {chemistry_score}/10
55
-
56
- Study Habits:
57
- - Daily Study Hours: {study_hours}
58
- - Time Management: {time_management}
59
-
60
- Problem Solving:
61
- - Approach: {problem_approach}
62
-
63
- Stress Management:
64
- - Stress Level: {stress_level}
65
 
 
66
  Provide the analysis in this format:
67
  **Strengths:** [Identify 3 key strengths]
68
  **Opportunities:** [Suggest 3 improvement areas]
@@ -71,11 +98,13 @@ def main():
71
  """
72
 
73
  # Get Gemini response
74
- response = model.generate_content(prompt)
75
-
76
- # Display analysis
77
- st.subheader("SOCA Analysis Report")
78
- st.markdown(response.text)
 
79
 
 
80
  if __name__ == "__main__":
81
  main()
 
2
  import google.generativeai as genai
3
  from dotenv import load_dotenv
4
  import os
5
+ import json
6
 
7
  # Load environment variables
8
  load_dotenv()
 
11
  genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
12
  model = genai.GenerativeModel('gemini-pro')
13
 
14
+ # Load questionnaire from JSON
15
+ def load_questionnaire():
16
+ with open('assets/questionnaire.json', 'r') as f:
17
+ return json.load(f)
18
+
19
+ # Render questions based on type
20
+ def render_question(question):
21
+ question_type = question.get("type")
22
+ if question_type == "slider":
23
+ return st.slider(
24
+ question["question"],
25
+ min_value=question.get("min", 1),
26
+ max_value=question.get("max", 10),
27
+ value=question.get("default", 5)
28
+ )
29
+ elif question_type == "select_slider":
30
+ return st.select_slider(
31
+ question["question"],
32
+ options=question["options"],
33
+ value=question.get("default")
34
+ )
35
+ elif question_type == "radio":
36
+ return st.radio(
37
+ question["question"],
38
+ options=question["options"]
39
+ )
40
+ elif question_type == "select":
41
+ return st.selectbox(
42
+ question["question"],
43
+ options=question["options"]
44
+ )
45
+ elif question_type == "multiselect":
46
+ return st.multiselect(
47
+ question["question"],
48
+ options=question["options"]
49
+ )
50
+ elif question_type == "number":
51
+ return st.number_input(
52
+ question["question"],
53
+ min_value=question.get("min", 0),
54
+ max_value=question.get("max", 24),
55
+ value=question.get("default", 4)
56
+ )
57
+ else:
58
+ st.warning(f"Unsupported question type: {question_type}")
59
+ return None
60
+
61
+ # Main function
62
  def main():
63
  st.title("JEE SOCA Analysis System πŸš€")
64
  st.subheader("AI-Powered Skill Assessment for JEE Aspirants")
65
 
66
+ # Load questionnaire
67
+ questionnaire = load_questionnaire()
68
+
69
+ # Collect responses
70
+ responses = {}
71
  with st.form("student_form"):
72
  st.header("Student Questionnaire")
73
 
74
+ # Render questions from JSON
75
+ for section in questionnaire["questionnaire"]:
76
+ st.subheader(f"πŸ“š {section['section']}")
77
+ for question in section["questions"]:
78
+ response = render_question(question)
79
+ if response is not None:
80
+ responses[question["question"]] = response
 
 
 
 
 
 
 
 
 
 
 
81
 
82
+ # Submit button
 
 
 
 
 
83
  submitted = st.form_submit_button("Generate SOCA Analysis")
84
 
85
  if submitted:
86
  with st.spinner("Analyzing responses..."):
87
+ # Prepare prompt for Gemini
88
+ prompt = "Analyze this JEE student's profile and create a SOCA analysis:\n\n"
89
+ for question, response in responses.items():
90
+ prompt += f"- {question}: {response}\n"
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ prompt += """
93
  Provide the analysis in this format:
94
  **Strengths:** [Identify 3 key strengths]
95
  **Opportunities:** [Suggest 3 improvement areas]
 
98
  """
99
 
100
  # Get Gemini response
101
+ try:
102
+ response = model.generate_content(prompt)
103
+ st.subheader("SOCA Analysis Report")
104
+ st.markdown(response.text)
105
+ except Exception as e:
106
+ st.error(f"An error occurred while generating the analysis: {e}")
107
 
108
+ # Run the app
109
  if __name__ == "__main__":
110
  main()