|
import cv2 |
|
import numpy as np |
|
import mp_triangles |
|
import time |
|
from PIL import Image |
|
|
|
from glibvision.cv2_utils import blend_rgb_images,pil_to_bgr_image,fill_points,crop,paste |
|
from mp_utils import get_pixel_cordinate_list,extract_landmark,get_pixel_cordinate,get_normalized_landmarks,sort_triangles_by_depth,get_landmark_bbox |
|
|
|
import numba as nb |
|
@nb.jit(nopython=True, parallel=True) |
|
def blend_rgb_images_numba(image1, image2, mask): |
|
height, width, _ = image1.shape |
|
result = np.empty((height, width, 3), dtype=np.float32) |
|
|
|
for i in nb.prange(height): |
|
for j in range(width): |
|
alpha = mask[i, j] / 255.0 |
|
for k in range(3): |
|
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[i, j, k] |
|
|
|
return result.astype(np.uint8) |
|
|
|
@nb.jit(nopython=True, parallel=True) |
|
def blend_rgba_images_numba(image1, image2, mask): |
|
assert image1.shape[2] == image2.shape[2] , f"Input images must be same image1 = {image1.shape[2]} image2 ={image2.shape[2]}" |
|
channel = image1.shape[2] |
|
height, width, _ = image1.shape |
|
result = np.empty((height, width, channel), dtype=np.float32) |
|
|
|
for i in nb.prange(height): |
|
for j in range(width): |
|
alpha = mask[i, j] / 255.0 |
|
for k in range(channel): |
|
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[i, j, k] |
|
|
|
return result.astype(np.uint8) |
|
|
|
|
|
""" |
|
https://stackoverflow.com/questions/6946653/copying-triangular-image-region-with-pil |
|
This topic give me a idea |
|
""" |
|
""" |
|
bug some hide value make white |
|
""" |
|
debug_affinn = False |
|
min_affin_plus = 0.1 |
|
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img): |
|
|
|
src_tri_np = np.float32(src_tri) |
|
dst_tri_np = np.float32(dst_tri) |
|
|
|
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}" |
|
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}" |
|
|
|
|
|
|
|
if (src_tri_np[0] == src_tri_np[1]).all(): |
|
src_tri_np[0]+=min_affin_plus |
|
if (src_tri_np[0] == src_tri_np[2]).all(): |
|
src_tri_np[0]+=min_affin_plus |
|
if (src_tri_np[1] == src_tri_np[2]).all(): |
|
src_tri_np[1]+=min_affin_plus |
|
if (src_tri_np[1] == src_tri_np[0]).all(): |
|
src_tri_np[1]+=min_affin_plus |
|
|
|
if (src_tri_np[1] == src_tri_np[0]).all() or (src_tri_np[1] == src_tri_np[2]).all() or (src_tri_np[2] == src_tri_np[0]).all(): |
|
print("same will white noise happen") |
|
|
|
M = cv2.getAffineTransform(src_tri_np, dst_tri_np) |
|
|
|
h_src, w_src = src_img.shape[:2] |
|
h_dst, w_dst = dst_img.shape[:2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
src_triangle = src_img |
|
|
|
|
|
|
|
|
|
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst)) |
|
if debug_affinn: |
|
cv2.imwrite('affin_src.jpg', src_triangle) |
|
cv2.imwrite('affin_transformed.jpg', transformed) |
|
|
|
|
|
|
|
|
|
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8) |
|
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_blend_rgb = False |
|
if use_blend_rgb: |
|
if src_img.shape[2] == 3: |
|
dst_img = blend_rgb_images_numba(dst_img,transformed,dst_mask) |
|
else: |
|
dst_img = blend_rgba_images_numba(dst_img,transformed,dst_mask) |
|
else: |
|
dst_mask_inv = cv2.bitwise_not(dst_mask) |
|
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask) |
|
dst_img = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv) |
|
dst_img = cv2.add(dst_img, transformed) |
|
|
|
|
|
|
|
|
|
|
|
if debug_affinn: |
|
cv2.imwrite('affin_transformed_masked.jpg', transformed) |
|
cv2.imwrite('affin_dst_mask.jpg', dst_mask) |
|
return dst_img |
|
|
|
|
|
|
|
from skimage.exposure import match_histograms |
|
def color_match(base_image,cropped_image,color_match_format="RGB"): |
|
reference = np.array(base_image.convert(color_match_format)) |
|
target =np.array(cropped_image.convert(color_match_format)) |
|
matched = match_histograms(target, reference,channel_axis=-1) |
|
|
|
return Image.fromarray(matched,mode=color_match_format) |
|
|
|
def process_landmark_transform(image,transform_target_image, |
|
innner_mouth,innner_eyes, |
|
color_matching=False,transparent_background=False,add_align_mouth=False,add_align_eyes=False,blur_size=0): |
|
image_h,image_w = image.shape[:2] |
|
align_h,align_w = transform_target_image.shape[:2] |
|
|
|
mp_image,image_face_landmarker_result = extract_landmark(image) |
|
image_larndmarks=image_face_landmarker_result.face_landmarks |
|
image_bbox = get_landmark_bbox(image_larndmarks,image_w,image_h,16,16) |
|
|
|
mp_image,align_face_landmarker_result = extract_landmark(transform_target_image) |
|
align_larndmarks=align_face_landmarker_result.face_landmarks |
|
align_bbox = get_landmark_bbox(align_larndmarks,align_w,align_h,16,16) |
|
|
|
if color_matching: |
|
image_cropped = crop(image,image_bbox) |
|
target_cropped = crop(transform_target_image,align_bbox) |
|
matched = match_histograms(image_cropped, target_cropped,channel_axis=-1) |
|
paste(image,matched,image_bbox[0],image_bbox[1]) |
|
|
|
|
|
landmark_points = get_normalized_landmarks(align_larndmarks) |
|
|
|
mesh_triangle_indices = mp_triangles.mesh_triangle_indices.copy() |
|
|
|
|
|
mesh_triangle_indices += mp_triangles.INNER_MOUTH |
|
|
|
mesh_triangle_indices += mp_triangles.INNER_LEFT_EYES + mp_triangles.INNER_RIGHT_EYES |
|
|
|
sort_triangles_by_depth(landmark_points,mesh_triangle_indices) |
|
|
|
|
|
|
|
|
|
triangle_size = len(mesh_triangle_indices) |
|
print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}") |
|
s = time.time() |
|
|
|
need_transparent_way = transparent_background == True or blur_size > 0 |
|
if need_transparent_way: |
|
transparent_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA)) |
|
h, w = transparent_image.shape[:2] |
|
cv2.rectangle(transparent_image, (0, 0), (w, h), (0,0,0,0), -1) |
|
|
|
applied_image = transparent_image |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA) |
|
|
|
else: |
|
applied_image = transform_target_image |
|
|
|
for i in range(0,triangle_size): |
|
triangle_indices = mesh_triangle_indices[i] |
|
|
|
|
|
image_points = get_pixel_cordinate_list(image_larndmarks,triangle_indices,image_w,image_h) |
|
|
|
align_points = get_pixel_cordinate_list(align_larndmarks,triangle_indices,align_w,align_h) |
|
|
|
|
|
|
|
|
|
|
|
applied_image=apply_affine_transformation_to_triangle(image_points,align_points,image,applied_image) |
|
|
|
print(f"take time {time.time()-s}") |
|
if need_transparent_way: |
|
blur_radius = blur_size |
|
if blur_radius!=0 and blur_radius%2 == 0: |
|
blur_radius+=1 |
|
|
|
b, g, r,a = cv2.split(applied_image) |
|
applied_image = cv2.merge([b,g,r]) |
|
mask = a.copy() |
|
dilate = blur_radius |
|
kernel = np.ones((dilate, dilate), np.uint8) |
|
mask = cv2.erode(mask, kernel, iterations=1) |
|
|
|
if blur_radius>0: |
|
blurred_image = cv2.GaussianBlur(mask, (blur_radius, blur_radius), 0) |
|
else: |
|
blurred_image = mask |
|
|
|
if transparent_background: |
|
|
|
transform_target_image=cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA) |
|
applied_image = cv2.merge([b,g,r,blurred_image]) |
|
else: |
|
applied_image = blend_rgb_images(transform_target_image,applied_image,blurred_image) |
|
|
|
|
|
if not innner_mouth or not innner_eyes or (transparent_background and (add_align_mouth or add_align_eyes)): |
|
|
|
import mp_constants |
|
dst_mask = np.zeros((align_h,align_w), dtype=np.uint8) |
|
if not innner_mouth or (transparent_background and add_align_mouth): |
|
mouth_cordinates = get_pixel_cordinate_list(align_larndmarks,mp_constants.LINE_INNER_MOUTH,align_h,align_w) |
|
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255) |
|
|
|
if (transparent_background and not add_align_mouth): |
|
cv2.fillPoly(transform_target_image, [np.int32(mouth_cordinates)], [0,0,0,0]) |
|
if not innner_eyes or (transparent_background and add_align_eyes): |
|
|
|
left_eyes_cordinates = get_pixel_cordinate_list(align_larndmarks,mp_constants.LINE_LEFT_INNER_EYES,align_h,align_w) |
|
|
|
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255) |
|
|
|
right_eyes_cordinates = get_pixel_cordinate_list(align_larndmarks,mp_constants.LINE_RIGHT_INNER_EYES,align_h,align_w) |
|
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255) |
|
|
|
if (transparent_background and not add_align_eyes): |
|
cv2.fillPoly(transform_target_image, [np.int32(left_eyes_cordinates)], [0,0,0,0]) |
|
cv2.fillPoly(transform_target_image, [np.int32(right_eyes_cordinates)], [0,0,0,0]) |
|
|
|
|
|
|
|
applied_image = blend_rgba_images_numba(applied_image,transform_target_image,dst_mask) |
|
|
|
return applied_image |
|
|
|
|
|
|
|
def process_landmark_transform_pil(pil_image,pil_align_target_image, |
|
innner_mouth,innner_eyes, |
|
color_matching=False,transparent_background=False,add_align_mouth=False,add_align_eyes=False,blur_size=0): |
|
image = pil_to_bgr_image(pil_image) |
|
align_target_image = pil_to_bgr_image(pil_align_target_image) |
|
cv_result = process_landmark_transform(image,align_target_image,innner_mouth,innner_eyes,color_matching,transparent_background,add_align_mouth,add_align_eyes,blur_size) |
|
if transparent_background: |
|
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA)) |
|
else: |
|
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB)) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
image = cv2.imread('examples/02316230.jpg') |
|
align_target = cv2.imread('examples/00003245_00.jpg') |
|
result_img = process_landmark_transform(image,align_target) |
|
|
|
cv2.imshow('Transformed Image', result_img) |
|
cv2.waitKey(0) |
|
cv2.destroyAllWindows() |
|
|
|
cv2.imwrite('align.png', result_img) |