File size: 12,173 Bytes
e3e4e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import cv2
import numpy as np
import mp_triangles
import time
from PIL import Image
from glibvision.cv2_utils import blend_rgb_images,pil_to_bgr_image,fill_points,crop,paste
from mp_utils import get_pixel_cordinate_list,extract_landmark,get_pixel_cordinate,get_normalized_landmarks,sort_triangles_by_depth,get_landmark_bbox
import numba as nb
@nb.jit(nopython=True, parallel=True)
def blend_rgb_images_numba(image1, image2, mask):
height, width, _ = image1.shape
result = np.empty((height, width, 3), dtype=np.float32)
for i in nb.prange(height):
for j in range(width):
alpha = mask[i, j] / 255.0
for k in range(3):
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[i, j, k]
return result.astype(np.uint8)
@nb.jit(nopython=True, parallel=True)
def blend_rgba_images_numba(image1, image2, mask):
assert image1.shape[2] == image2.shape[2] , f"Input images must be same image1 = {image1.shape[2]} image2 ={image2.shape[2]}"
channel = image1.shape[2]
height, width, _ = image1.shape
result = np.empty((height, width, channel), dtype=np.float32)
for i in nb.prange(height):
for j in range(width):
alpha = mask[i, j] / 255.0
for k in range(channel):
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[i, j, k]
return result.astype(np.uint8)
"""
https://stackoverflow.com/questions/6946653/copying-triangular-image-region-with-pil
This topic give me a idea
"""
"""
bug some hide value make white
"""
debug_affinn = False
min_affin_plus = 0.1
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
src_tri_np = np.float32(src_tri)
dst_tri_np = np.float32(dst_tri)
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}"
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}"
#trying avoid same value,or M will broken
if (src_tri_np[0] == src_tri_np[1]).all():
src_tri_np[0]+=min_affin_plus
if (src_tri_np[0] == src_tri_np[2]).all():
src_tri_np[0]+=min_affin_plus
if (src_tri_np[1] == src_tri_np[2]).all():
src_tri_np[1]+=min_affin_plus
if (src_tri_np[1] == src_tri_np[0]).all():
src_tri_np[1]+=min_affin_plus
if (src_tri_np[1] == src_tri_np[0]).all() or (src_tri_np[1] == src_tri_np[2]).all() or (src_tri_np[2] == src_tri_np[0]).all():
print("same will white noise happen")
# 透視変換行列の計算
M = cv2.getAffineTransform(src_tri_np, dst_tri_np)
# 画像のサイズ
h_src, w_src = src_img.shape[:2]
h_dst, w_dst = dst_img.shape[:2]
# 元画像から三角形領域を切り抜くマスク生成
#src_mask = np.zeros((h_src, w_src), dtype=np.uint8)
#cv2.fillPoly(src_mask, [np.int32(src_tri)], 255)
# Not 元画像の三角形領域のみをマスクで抽出
src_triangle = src_img #cv2.bitwise_and(src_img, src_img, mask=src_mask)
# 変換行列を使って元画像の三角形領域を目標画像のサイズへ変換
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst))
if debug_affinn:
cv2.imwrite('affin_src.jpg', src_triangle)
cv2.imwrite('affin_transformed.jpg', transformed)
#print(f"dst_img={dst_img.shape}")
#print(f"transformed={transformed.shape}")
# 変換後のマスクの生成
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8)
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255)
# 目標画像のマスク領域をクリアするためにデストのインバートマスクを作成
#dst_mask_inv = cv2.bitwise_not(dst_mask)
# 目標画像のマスク部分をクリア
#dst_background = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
# 変換された元画像の三角形部分と目標画像の背景部分を合成
#dst_img = cv2.add(dst_background, transformed)
#s = time.time()
#dst_img = blend_rgb_images(dst_img,transformed,dst_mask)
use_blend_rgb = False
if use_blend_rgb:
if src_img.shape[2] == 3:
dst_img = blend_rgb_images_numba(dst_img,transformed,dst_mask)
else:
dst_img = blend_rgba_images_numba(dst_img,transformed,dst_mask)
else:
dst_mask_inv = cv2.bitwise_not(dst_mask)
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask)
dst_img = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
dst_img = cv2.add(dst_img, transformed)
# TODO add rgb mode
#print(f"blend {time.time() -s}")
if debug_affinn:
cv2.imwrite('affin_transformed_masked.jpg', transformed)
cv2.imwrite('affin_dst_mask.jpg', dst_mask)
return dst_img
from skimage.exposure import match_histograms
def color_match(base_image,cropped_image,color_match_format="RGB"):
reference = np.array(base_image.convert(color_match_format))
target =np.array(cropped_image.convert(color_match_format))
matched = match_histograms(target, reference,channel_axis=-1)
return Image.fromarray(matched,mode=color_match_format)
def process_landmark_transform(image,transform_target_image,
innner_mouth,innner_eyes,
color_matching=False,transparent_background=False,add_align_mouth=False,add_align_eyes=False,blur_size=0):
image_h,image_w = image.shape[:2]
align_h,align_w = transform_target_image.shape[:2]
mp_image,image_face_landmarker_result = extract_landmark(image)
image_larndmarks=image_face_landmarker_result.face_landmarks
image_bbox = get_landmark_bbox(image_larndmarks,image_w,image_h,16,16)
mp_image,align_face_landmarker_result = extract_landmark(transform_target_image)
align_larndmarks=align_face_landmarker_result.face_landmarks
align_bbox = get_landmark_bbox(align_larndmarks,align_w,align_h,16,16)
if color_matching:
image_cropped = crop(image,image_bbox)
target_cropped = crop(transform_target_image,align_bbox)
matched = match_histograms(image_cropped, target_cropped,channel_axis=-1)
paste(image,matched,image_bbox[0],image_bbox[1])
landmark_points = get_normalized_landmarks(align_larndmarks)
mesh_triangle_indices = mp_triangles.mesh_triangle_indices.copy()#using directly sometime share
#always mix for blur
mesh_triangle_indices += mp_triangles.INNER_MOUTH
mesh_triangle_indices += mp_triangles.INNER_LEFT_EYES + mp_triangles.INNER_RIGHT_EYES
#print(mesh_triangle_indices)
sort_triangles_by_depth(landmark_points,mesh_triangle_indices)
#mesh_triangle_indices = mp_triangles.contour_to_triangles(True,draw_updown_contour) + mp_triangles.contour_to_triangles(False,draw_updown_contour)+ mp_triangles.mesh_triangle_indices
triangle_size = len(mesh_triangle_indices)
print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}")
s = time.time()
need_transparent_way = transparent_background == True or blur_size > 0
if need_transparent_way:# convert Alpha
transparent_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
h, w = transparent_image.shape[:2]
cv2.rectangle(transparent_image, (0, 0), (w, h), (0,0,0,0), -1)
applied_image = transparent_image
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
else:
applied_image = transform_target_image
for i in range(0,triangle_size):#
triangle_indices = mesh_triangle_indices[i]
image_points = get_pixel_cordinate_list(image_larndmarks,triangle_indices,image_w,image_h)
align_points = get_pixel_cordinate_list(align_larndmarks,triangle_indices,align_w,align_h)
#print(image_points)
#print(align_points)
#fill_points(image,image_points,thickness=3,fill_color=(0,0,0,0))
#s = time.time()
#print(f"applied_image={applied_image.shape}")
applied_image=apply_affine_transformation_to_triangle(image_points,align_points,image,applied_image)
print(f"take time {time.time()-s}")
if need_transparent_way:
blur_radius = blur_size
if blur_radius!=0 and blur_radius%2 == 0:
blur_radius+=1
b, g, r,a = cv2.split(applied_image)
applied_image = cv2.merge([b,g,r])
mask = a.copy()
dilate = blur_radius
kernel = np.ones((dilate, dilate), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
if blur_radius>0:
blurred_image = cv2.GaussianBlur(mask, (blur_radius, blur_radius), 0) #should be odd
else:
blurred_image = mask
if transparent_background:
#transform_target_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
transform_target_image=cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA)
applied_image = cv2.merge([b,g,r,blurred_image])
else:
applied_image = blend_rgb_images(transform_target_image,applied_image,blurred_image)
# after mix
if not innner_mouth or not innner_eyes or (transparent_background and (add_align_mouth or add_align_eyes)):
import mp_constants
dst_mask = np.zeros((align_h,align_w), dtype=np.uint8)
if not innner_mouth or (transparent_background and add_align_mouth):
mouth_cordinates = get_pixel_cordinate_list(align_larndmarks,mp_constants.LINE_INNER_MOUTH,align_h,align_w)
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255)
if (transparent_background and not add_align_mouth):
cv2.fillPoly(transform_target_image, [np.int32(mouth_cordinates)], [0,0,0,0])
if not innner_eyes or (transparent_background and add_align_eyes):
left_eyes_cordinates = get_pixel_cordinate_list(align_larndmarks,mp_constants.LINE_LEFT_INNER_EYES,align_h,align_w)
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255)
right_eyes_cordinates = get_pixel_cordinate_list(align_larndmarks,mp_constants.LINE_RIGHT_INNER_EYES,align_h,align_w)
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255)
if (transparent_background and not add_align_eyes):
cv2.fillPoly(transform_target_image, [np.int32(left_eyes_cordinates)], [0,0,0,0])
cv2.fillPoly(transform_target_image, [np.int32(right_eyes_cordinates)], [0,0,0,0])
#cv2.imwrite("deb_transform_target_image.jpg",transform_target_image)
#cv2.imwrite("deb_dst_mask.jpg",dst_mask)
#cv2.imwrite("deb_applied_image.jpg",applied_image)
applied_image = blend_rgba_images_numba(applied_image,transform_target_image,dst_mask)
return applied_image
def process_landmark_transform_pil(pil_image,pil_align_target_image,
innner_mouth,innner_eyes,
color_matching=False,transparent_background=False,add_align_mouth=False,add_align_eyes=False,blur_size=0):
image = pil_to_bgr_image(pil_image)
align_target_image = pil_to_bgr_image(pil_align_target_image)
cv_result = process_landmark_transform(image,align_target_image,innner_mouth,innner_eyes,color_matching,transparent_background,add_align_mouth,add_align_eyes,blur_size)
if transparent_background:
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA))
else:
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB))
if __name__ == "__main__":
#image = Image.open('examples/00002062.jpg')
#align_target = Image.open('examples/02316230.jpg')
image = cv2.imread('examples/02316230.jpg') # 元画像
align_target = cv2.imread('examples/00003245_00.jpg') # 目標画像
result_img = process_landmark_transform(image,align_target)
cv2.imshow('Transformed Image', result_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('align.png', result_img) |