|
import cv2 |
|
import numpy as np |
|
import mp_triangles |
|
import time |
|
from PIL import Image |
|
|
|
from glibvision.cv2_utils import ( |
|
blend_rgb_images, |
|
pil_to_bgr_image, |
|
fill_points, |
|
crop, |
|
paste, |
|
) |
|
from mp_utils import ( |
|
get_pixel_cordinate_list, |
|
extract_landmark, |
|
get_pixel_cordinate, |
|
get_normalized_landmarks, |
|
sort_triangles_by_depth, |
|
get_landmark_bbox, |
|
) |
|
|
|
import numba as nb |
|
|
|
|
|
@nb.jit(nopython=True, parallel=True) |
|
def blend_rgb_images_numba(image1, image2, mask): |
|
height, width, _ = image1.shape |
|
result = np.empty((height, width, 3), dtype=np.float32) |
|
|
|
for i in nb.prange(height): |
|
for j in range(width): |
|
alpha = mask[i, j] / 255.0 |
|
for k in range(3): |
|
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[ |
|
i, j, k |
|
] |
|
|
|
return result.astype(np.uint8) |
|
|
|
|
|
@nb.jit(nopython=True, parallel=True) |
|
def blend_rgba_images_numba(image1, image2, mask): |
|
assert ( |
|
image1.shape[2] == image2.shape[2] |
|
), f"Input images must be same image1 = {image1.shape[2]} image2 ={image2.shape[2]}" |
|
channel = image1.shape[2] |
|
height, width, _ = image1.shape |
|
result = np.empty((height, width, channel), dtype=np.float32) |
|
|
|
for i in nb.prange(height): |
|
for j in range(width): |
|
alpha = mask[i, j] / 255.0 |
|
for k in range(channel): |
|
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[ |
|
i, j, k |
|
] |
|
|
|
return result.astype(np.uint8) |
|
|
|
|
|
""" |
|
https://stackoverflow.com/questions/6946653/copying-triangular-image-region-with-pil |
|
This topic give me a idea |
|
""" |
|
""" |
|
bug some hide value make white |
|
""" |
|
debug_affinn = False |
|
min_affin_plus = 0.1 |
|
|
|
|
|
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img): |
|
src_tri_np = np.float32(src_tri) |
|
dst_tri_np = np.float32(dst_tri) |
|
|
|
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}" |
|
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}" |
|
|
|
|
|
if (src_tri_np[0] == src_tri_np[1]).all(): |
|
src_tri_np[0] += min_affin_plus |
|
if (src_tri_np[0] == src_tri_np[2]).all(): |
|
src_tri_np[0] += min_affin_plus |
|
if (src_tri_np[1] == src_tri_np[2]).all(): |
|
src_tri_np[1] += min_affin_plus |
|
if (src_tri_np[1] == src_tri_np[0]).all(): |
|
src_tri_np[1] += min_affin_plus |
|
|
|
if ( |
|
(src_tri_np[1] == src_tri_np[0]).all() |
|
or (src_tri_np[1] == src_tri_np[2]).all() |
|
or (src_tri_np[2] == src_tri_np[0]).all() |
|
): |
|
print("same will white noise happen") |
|
|
|
M = cv2.getAffineTransform(src_tri_np, dst_tri_np) |
|
|
|
h_src, w_src = src_img.shape[:2] |
|
h_dst, w_dst = dst_img.shape[:2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
src_triangle = src_img |
|
|
|
|
|
|
|
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst)) |
|
if debug_affinn: |
|
cv2.imwrite("affin_src.jpg", src_triangle) |
|
cv2.imwrite("affin_transformed.jpg", transformed) |
|
|
|
|
|
|
|
|
|
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8) |
|
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_blend_rgb = False |
|
if use_blend_rgb: |
|
if src_img.shape[2] == 3: |
|
dst_img = blend_rgb_images_numba(dst_img, transformed, dst_mask) |
|
else: |
|
dst_img = blend_rgba_images_numba(dst_img, transformed, dst_mask) |
|
else: |
|
dst_mask_inv = cv2.bitwise_not(dst_mask) |
|
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask) |
|
dst_img = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv) |
|
dst_img = cv2.add(dst_img, transformed) |
|
|
|
|
|
|
|
|
|
if debug_affinn: |
|
cv2.imwrite("affin_transformed_masked.jpg", transformed) |
|
cv2.imwrite("affin_dst_mask.jpg", dst_mask) |
|
return dst_img |
|
|
|
|
|
from skimage.exposure import match_histograms |
|
|
|
|
|
def color_match(base_image, cropped_image, color_match_format="RGB"): |
|
reference = np.array(base_image.convert(color_match_format)) |
|
target = np.array(cropped_image.convert(color_match_format)) |
|
matched = match_histograms(target, reference, channel_axis=-1) |
|
|
|
return Image.fromarray(matched, mode=color_match_format) |
|
|
|
|
|
def process_landmark_transform( |
|
image, |
|
transform_target_image, |
|
innner_mouth, |
|
innner_eyes, |
|
color_matching=False, |
|
transparent_background=False, |
|
add_align_mouth=False, |
|
add_align_eyes=False, |
|
blur_size=0, |
|
): |
|
image_h, image_w = image.shape[:2] |
|
align_h, align_w = transform_target_image.shape[:2] |
|
|
|
mp_image, image_face_landmarker_result = extract_landmark(image) |
|
image_larndmarks = image_face_landmarker_result.face_landmarks |
|
image_bbox = get_landmark_bbox(image_larndmarks, image_w, image_h, 16, 16) |
|
|
|
mp_image, align_face_landmarker_result = extract_landmark(transform_target_image) |
|
align_larndmarks = align_face_landmarker_result.face_landmarks |
|
align_bbox = get_landmark_bbox(align_larndmarks, align_w, align_h, 16, 16) |
|
|
|
if color_matching: |
|
image_cropped = crop(image, image_bbox) |
|
target_cropped = crop(transform_target_image, align_bbox) |
|
matched = match_histograms(image_cropped, target_cropped, channel_axis=-1) |
|
paste(image, matched, image_bbox[0], image_bbox[1]) |
|
|
|
landmark_points = get_normalized_landmarks(align_larndmarks) |
|
|
|
mesh_triangle_indices = ( |
|
mp_triangles.mesh_triangle_indices.copy() |
|
) |
|
|
|
|
|
mesh_triangle_indices += mp_triangles.INNER_MOUTH |
|
|
|
mesh_triangle_indices += ( |
|
mp_triangles.INNER_LEFT_EYES + mp_triangles.INNER_RIGHT_EYES |
|
) |
|
|
|
sort_triangles_by_depth(landmark_points, mesh_triangle_indices) |
|
|
|
|
|
|
|
triangle_size = len(mesh_triangle_indices) |
|
|
|
s = time.time() |
|
|
|
need_transparent_way = transparent_background == True or blur_size > 0 |
|
if need_transparent_way: |
|
transparent_image = np.zeros_like( |
|
cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA) |
|
) |
|
h, w = transparent_image.shape[:2] |
|
cv2.rectangle(transparent_image, (0, 0), (w, h), (0, 0, 0, 0), -1) |
|
|
|
applied_image = transparent_image |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA) |
|
|
|
else: |
|
applied_image = transform_target_image |
|
|
|
for i in range(0, triangle_size): |
|
triangle_indices = mesh_triangle_indices[i] |
|
|
|
image_points = get_pixel_cordinate_list( |
|
image_larndmarks, triangle_indices, image_w, image_h |
|
) |
|
|
|
align_points = get_pixel_cordinate_list( |
|
align_larndmarks, triangle_indices, align_w, align_h |
|
) |
|
|
|
|
|
|
|
|
|
|
|
applied_image = apply_affine_transformation_to_triangle( |
|
image_points, align_points, image, applied_image |
|
) |
|
|
|
|
|
if need_transparent_way: |
|
blur_radius = blur_size |
|
if blur_radius != 0 and blur_radius % 2 == 0: |
|
blur_radius += 1 |
|
|
|
b, g, r, a = cv2.split(applied_image) |
|
applied_image = cv2.merge([b, g, r]) |
|
mask = a.copy() |
|
dilate = blur_radius |
|
kernel = np.ones((dilate, dilate), np.uint8) |
|
mask = cv2.erode(mask, kernel, iterations=1) |
|
|
|
if blur_radius > 0: |
|
blurred_image = cv2.GaussianBlur( |
|
mask, (blur_radius, blur_radius), 0 |
|
) |
|
else: |
|
blurred_image = mask |
|
|
|
if transparent_background: |
|
|
|
transform_target_image = cv2.cvtColor( |
|
transform_target_image, cv2.COLOR_BGR2BGRA |
|
) |
|
applied_image = cv2.merge([b, g, r, blurred_image]) |
|
else: |
|
applied_image = blend_rgb_images( |
|
transform_target_image, applied_image, blurred_image |
|
) |
|
|
|
|
|
if ( |
|
not innner_mouth |
|
or not innner_eyes |
|
or (transparent_background and (add_align_mouth or add_align_eyes)) |
|
): |
|
import mp_constants |
|
|
|
dst_mask = np.zeros((align_h, align_w), dtype=np.uint8) |
|
if not innner_mouth or (transparent_background and add_align_mouth): |
|
mouth_cordinates = get_pixel_cordinate_list( |
|
align_larndmarks, mp_constants.LINE_INNER_MOUTH, align_w, align_h |
|
) |
|
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255) |
|
|
|
if transparent_background and not add_align_mouth: |
|
cv2.fillPoly( |
|
transform_target_image, [np.int32(mouth_cordinates)], [0, 0, 0, 0] |
|
) |
|
|
|
if not innner_eyes or (transparent_background and add_align_eyes): |
|
left_eyes_cordinates = get_pixel_cordinate_list( |
|
align_larndmarks, mp_constants.LINE_LEFT_INNER_EYES, align_w, align_h |
|
) |
|
|
|
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255) |
|
|
|
right_eyes_cordinates = get_pixel_cordinate_list( |
|
align_larndmarks, mp_constants.LINE_RIGHT_INNER_EYES, align_w, align_h |
|
) |
|
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255) |
|
|
|
if transparent_background and not add_align_eyes: |
|
cv2.fillPoly( |
|
transform_target_image, |
|
[np.int32(left_eyes_cordinates)], |
|
[0, 0, 0, 0], |
|
) |
|
cv2.fillPoly( |
|
transform_target_image, |
|
[np.int32(right_eyes_cordinates)], |
|
[0, 0, 0, 0], |
|
) |
|
|
|
|
|
|
|
|
|
applied_image = blend_rgba_images_numba( |
|
applied_image, transform_target_image, dst_mask |
|
) |
|
cv2.imwrite("deb_final_transform_target_image.jpg", transform_target_image) |
|
|
|
return applied_image |
|
|
|
|
|
def process_landmark_transform_pil( |
|
pil_image, |
|
pil_align_target_image, |
|
innner_mouth, |
|
innner_eyes, |
|
color_matching=False, |
|
transparent_background=False, |
|
add_align_mouth=False, |
|
add_align_eyes=False, |
|
blur_size=0, |
|
): |
|
image = pil_to_bgr_image(pil_image) |
|
align_target_image = pil_to_bgr_image(pil_align_target_image) |
|
cv_result = process_landmark_transform( |
|
image, |
|
align_target_image, |
|
innner_mouth, |
|
innner_eyes, |
|
color_matching, |
|
transparent_background, |
|
add_align_mouth, |
|
add_align_eyes, |
|
blur_size, |
|
) |
|
if transparent_background: |
|
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA)) |
|
else: |
|
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
image = cv2.imread("examples/02316230.jpg") |
|
align_target = cv2.imread("examples/00003245_00.jpg") |
|
result_img = process_landmark_transform(image, align_target) |
|
|
|
cv2.imshow("Transformed Image", result_img) |
|
cv2.waitKey(0) |
|
cv2.destroyAllWindows() |
|
|
|
cv2.imwrite("align.png", result_img) |
|
|