fix broken when image is not square
Browse files- mediapipe_transform.py +227 -136
mediapipe_transform.py
CHANGED
|
@@ -4,36 +4,58 @@ import mp_triangles
|
|
| 4 |
import time
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
-
from glibvision.cv2_utils import
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
import numba as nb
|
|
|
|
|
|
|
| 11 |
@nb.jit(nopython=True, parallel=True)
|
| 12 |
def blend_rgb_images_numba(image1, image2, mask):
|
| 13 |
height, width, _ = image1.shape
|
| 14 |
result = np.empty((height, width, 3), dtype=np.float32)
|
| 15 |
-
|
| 16 |
for i in nb.prange(height):
|
| 17 |
for j in range(width):
|
| 18 |
alpha = mask[i, j] / 255.0
|
| 19 |
for k in range(3):
|
| 20 |
-
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
return result.astype(np.uint8)
|
| 23 |
|
|
|
|
| 24 |
@nb.jit(nopython=True, parallel=True)
|
| 25 |
def blend_rgba_images_numba(image1, image2, mask):
|
| 26 |
-
assert
|
|
|
|
|
|
|
| 27 |
channel = image1.shape[2]
|
| 28 |
height, width, _ = image1.shape
|
| 29 |
result = np.empty((height, width, channel), dtype=np.float32)
|
| 30 |
-
|
| 31 |
for i in nb.prange(height):
|
| 32 |
for j in range(width):
|
| 33 |
alpha = mask[i, j] / 255.0
|
| 34 |
for k in range(channel):
|
| 35 |
-
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
return result.astype(np.uint8)
|
| 38 |
|
| 39 |
|
|
@@ -46,26 +68,30 @@ bug some hide value make white
|
|
| 46 |
"""
|
| 47 |
debug_affinn = False
|
| 48 |
min_affin_plus = 0.1
|
|
|
|
|
|
|
| 49 |
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
| 50 |
-
|
| 51 |
src_tri_np = np.float32(src_tri)
|
| 52 |
dst_tri_np = np.float32(dst_tri)
|
| 53 |
|
| 54 |
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}"
|
| 55 |
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}"
|
| 56 |
|
| 57 |
-
|
| 58 |
-
#trying avoid same value,or M will broken
|
| 59 |
if (src_tri_np[0] == src_tri_np[1]).all():
|
| 60 |
-
src_tri_np[0]+=min_affin_plus
|
| 61 |
if (src_tri_np[0] == src_tri_np[2]).all():
|
| 62 |
-
src_tri_np[0]+=min_affin_plus
|
| 63 |
if (src_tri_np[1] == src_tri_np[2]).all():
|
| 64 |
-
src_tri_np[1]+=min_affin_plus
|
| 65 |
if (src_tri_np[1] == src_tri_np[0]).all():
|
| 66 |
-
src_tri_np[1]+=min_affin_plus
|
| 67 |
|
| 68 |
-
if (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
print("same will white noise happen")
|
| 70 |
# 透視変換行列の計算
|
| 71 |
M = cv2.getAffineTransform(src_tri_np, dst_tri_np)
|
|
@@ -74,43 +100,42 @@ def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
|
| 74 |
h_dst, w_dst = dst_img.shape[:2]
|
| 75 |
|
| 76 |
# 元画像から三角形領域を切り抜くマスク生成
|
| 77 |
-
#src_mask = np.zeros((h_src, w_src), dtype=np.uint8)
|
| 78 |
-
#cv2.fillPoly(src_mask, [np.int32(src_tri)], 255)
|
| 79 |
|
| 80 |
# Not 元画像の三角形領域のみをマスクで抽出
|
| 81 |
-
src_triangle = src_img
|
| 82 |
|
| 83 |
# 変換行列を使って元画像の三角形領域を目標画像のサイズへ変換
|
| 84 |
-
|
| 85 |
-
|
| 86 |
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst))
|
| 87 |
if debug_affinn:
|
| 88 |
-
cv2.imwrite(
|
| 89 |
-
cv2.imwrite(
|
| 90 |
|
| 91 |
-
#print(f"dst_img={dst_img.shape}")
|
| 92 |
-
#print(f"transformed={transformed.shape}")
|
| 93 |
# 変換後のマスクの生成
|
| 94 |
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8)
|
| 95 |
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255)
|
| 96 |
|
| 97 |
# ���標画像のマスク領域をクリアするためにデストのインバートマスクを作成
|
| 98 |
-
#dst_mask_inv = cv2.bitwise_not(dst_mask)
|
| 99 |
|
| 100 |
# 目標画像のマスク部分をクリア
|
| 101 |
-
#dst_background = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
|
| 102 |
|
| 103 |
# 変換された元画像の三角形部分と目標画像の背景部分を合成
|
| 104 |
-
#dst_img = cv2.add(dst_background, transformed)
|
| 105 |
-
#s = time.time()
|
| 106 |
-
#dst_img = blend_rgb_images(dst_img,transformed,dst_mask)
|
| 107 |
|
| 108 |
use_blend_rgb = False
|
| 109 |
if use_blend_rgb:
|
| 110 |
-
if src_img.shape[2] == 3:
|
| 111 |
-
dst_img = blend_rgb_images_numba(dst_img,transformed,dst_mask)
|
| 112 |
else:
|
| 113 |
-
dst_img = blend_rgba_images_numba(dst_img,transformed,dst_mask)
|
| 114 |
else:
|
| 115 |
dst_mask_inv = cv2.bitwise_not(dst_mask)
|
| 116 |
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask)
|
|
@@ -118,166 +143,232 @@ def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
|
| 118 |
dst_img = cv2.add(dst_img, transformed)
|
| 119 |
|
| 120 |
# TODO add rgb mode
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
#print(f"blend {time.time() -s}")
|
| 124 |
if debug_affinn:
|
| 125 |
-
cv2.imwrite(
|
| 126 |
-
cv2.imwrite(
|
| 127 |
return dst_img
|
| 128 |
|
| 129 |
|
|
|
|
| 130 |
|
| 131 |
-
from skimage.exposure import match_histograms
|
| 132 |
-
def color_match(base_image,cropped_image,color_match_format="RGB"):
|
| 133 |
-
reference = np.array(base_image.convert(color_match_format))
|
| 134 |
-
target =np.array(cropped_image.convert(color_match_format))
|
| 135 |
-
matched = match_histograms(target, reference,channel_axis=-1)
|
| 136 |
-
|
| 137 |
-
return Image.fromarray(matched,mode=color_match_format)
|
| 138 |
-
|
| 139 |
-
def process_landmark_transform(image,transform_target_image,
|
| 140 |
-
innner_mouth,innner_eyes,
|
| 141 |
-
color_matching=False,transparent_background=False,add_align_mouth=False,add_align_eyes=False,blur_size=0):
|
| 142 |
-
image_h,image_w = image.shape[:2]
|
| 143 |
-
align_h,align_w = transform_target_image.shape[:2]
|
| 144 |
-
|
| 145 |
-
mp_image,image_face_landmarker_result = extract_landmark(image)
|
| 146 |
-
image_larndmarks=image_face_landmarker_result.face_landmarks
|
| 147 |
-
image_bbox = get_landmark_bbox(image_larndmarks,image_w,image_h,16,16)
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
if color_matching:
|
| 154 |
-
image_cropped = crop(image,image_bbox)
|
| 155 |
-
target_cropped = crop(transform_target_image,align_bbox)
|
| 156 |
-
matched = match_histograms(image_cropped, target_cropped,channel_axis=-1)
|
| 157 |
-
paste(image,matched,image_bbox[0],image_bbox[1])
|
| 158 |
-
|
| 159 |
|
| 160 |
landmark_points = get_normalized_landmarks(align_larndmarks)
|
| 161 |
-
|
| 162 |
-
mesh_triangle_indices =
|
| 163 |
-
|
| 164 |
-
#
|
|
|
|
|
|
|
| 165 |
mesh_triangle_indices += mp_triangles.INNER_MOUTH
|
| 166 |
-
|
| 167 |
-
mesh_triangle_indices +=
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
triangle_size = len(mesh_triangle_indices)
|
| 175 |
-
print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}")
|
| 176 |
s = time.time()
|
| 177 |
-
|
| 178 |
need_transparent_way = transparent_background == True or blur_size > 0
|
| 179 |
-
if need_transparent_way
|
| 180 |
-
transparent_image = np.zeros_like(
|
|
|
|
|
|
|
| 181 |
h, w = transparent_image.shape[:2]
|
| 182 |
-
cv2.rectangle(transparent_image, (0, 0), (w, h), (0,0,0,0), -1)
|
| 183 |
|
| 184 |
applied_image = transparent_image
|
| 185 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
|
| 186 |
-
|
| 187 |
else:
|
| 188 |
applied_image = transform_target_image
|
| 189 |
-
|
| 190 |
-
for i in range(0,triangle_size)
|
| 191 |
triangle_indices = mesh_triangle_indices[i]
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
#
|
| 201 |
-
#print(
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
if need_transparent_way:
|
| 206 |
blur_radius = blur_size
|
| 207 |
-
if blur_radius!=0 and blur_radius%2 == 0:
|
| 208 |
-
blur_radius+=1
|
| 209 |
-
|
| 210 |
-
b, g, r,a = cv2.split(applied_image)
|
| 211 |
-
applied_image = cv2.merge([b,g,r])
|
| 212 |
mask = a.copy()
|
| 213 |
dilate = blur_radius
|
| 214 |
kernel = np.ones((dilate, dilate), np.uint8)
|
| 215 |
mask = cv2.erode(mask, kernel, iterations=1)
|
| 216 |
|
| 217 |
-
if blur_radius>0:
|
| 218 |
-
blurred_image = cv2.GaussianBlur(
|
|
|
|
|
|
|
| 219 |
else:
|
| 220 |
blurred_image = mask
|
| 221 |
|
| 222 |
if transparent_background:
|
| 223 |
-
#transform_target_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
|
| 224 |
-
transform_target_image=cv2.cvtColor(
|
| 225 |
-
|
|
|
|
|
|
|
| 226 |
else:
|
| 227 |
-
applied_image = blend_rgb_images(
|
|
|
|
|
|
|
| 228 |
|
| 229 |
# after mix
|
| 230 |
-
if
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
| 232 |
import mp_constants
|
| 233 |
-
|
|
|
|
| 234 |
if not innner_mouth or (transparent_background and add_align_mouth):
|
| 235 |
-
mouth_cordinates = get_pixel_cordinate_list(
|
|
|
|
|
|
|
| 236 |
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255)
|
| 237 |
|
| 238 |
-
if
|
| 239 |
-
cv2.fillPoly(
|
|
|
|
|
|
|
|
|
|
| 240 |
if not innner_eyes or (transparent_background and add_align_eyes):
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
| 244 |
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255)
|
| 245 |
|
| 246 |
-
right_eyes_cordinates = get_pixel_cordinate_list(
|
|
|
|
|
|
|
| 247 |
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255)
|
| 248 |
|
| 249 |
-
if
|
| 250 |
-
cv2.fillPoly(
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
return applied_image
|
| 258 |
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
image = pil_to_bgr_image(pil_image)
|
| 265 |
align_target_image = pil_to_bgr_image(pil_align_target_image)
|
| 266 |
-
cv_result = process_landmark_transform(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
if transparent_background:
|
| 268 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA))
|
| 269 |
else:
|
| 270 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB))
|
| 271 |
|
|
|
|
| 272 |
if __name__ == "__main__":
|
| 273 |
-
#image = Image.open('examples/00002062.jpg')
|
| 274 |
-
#align_target = Image.open('examples/02316230.jpg')
|
| 275 |
-
image = cv2.imread(
|
| 276 |
-
align_target = cv2.imread(
|
| 277 |
-
result_img = process_landmark_transform(image,align_target)
|
| 278 |
|
| 279 |
-
cv2.imshow(
|
| 280 |
cv2.waitKey(0)
|
| 281 |
cv2.destroyAllWindows()
|
| 282 |
|
| 283 |
-
cv2.imwrite(
|
|
|
|
| 4 |
import time
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
+
from glibvision.cv2_utils import (
|
| 8 |
+
blend_rgb_images,
|
| 9 |
+
pil_to_bgr_image,
|
| 10 |
+
fill_points,
|
| 11 |
+
crop,
|
| 12 |
+
paste,
|
| 13 |
+
)
|
| 14 |
+
from mp_utils import (
|
| 15 |
+
get_pixel_cordinate_list,
|
| 16 |
+
extract_landmark,
|
| 17 |
+
get_pixel_cordinate,
|
| 18 |
+
get_normalized_landmarks,
|
| 19 |
+
sort_triangles_by_depth,
|
| 20 |
+
get_landmark_bbox,
|
| 21 |
+
)
|
| 22 |
|
| 23 |
import numba as nb
|
| 24 |
+
|
| 25 |
+
|
| 26 |
@nb.jit(nopython=True, parallel=True)
|
| 27 |
def blend_rgb_images_numba(image1, image2, mask):
|
| 28 |
height, width, _ = image1.shape
|
| 29 |
result = np.empty((height, width, 3), dtype=np.float32)
|
| 30 |
+
|
| 31 |
for i in nb.prange(height):
|
| 32 |
for j in range(width):
|
| 33 |
alpha = mask[i, j] / 255.0
|
| 34 |
for k in range(3):
|
| 35 |
+
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
| 36 |
+
i, j, k
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
return result.astype(np.uint8)
|
| 40 |
|
| 41 |
+
|
| 42 |
@nb.jit(nopython=True, parallel=True)
|
| 43 |
def blend_rgba_images_numba(image1, image2, mask):
|
| 44 |
+
assert (
|
| 45 |
+
image1.shape[2] == image2.shape[2]
|
| 46 |
+
), f"Input images must be same image1 = {image1.shape[2]} image2 ={image2.shape[2]}"
|
| 47 |
channel = image1.shape[2]
|
| 48 |
height, width, _ = image1.shape
|
| 49 |
result = np.empty((height, width, channel), dtype=np.float32)
|
| 50 |
+
|
| 51 |
for i in nb.prange(height):
|
| 52 |
for j in range(width):
|
| 53 |
alpha = mask[i, j] / 255.0
|
| 54 |
for k in range(channel):
|
| 55 |
+
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
| 56 |
+
i, j, k
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
return result.astype(np.uint8)
|
| 60 |
|
| 61 |
|
|
|
|
| 68 |
"""
|
| 69 |
debug_affinn = False
|
| 70 |
min_affin_plus = 0.1
|
| 71 |
+
|
| 72 |
+
|
| 73 |
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
|
|
|
| 74 |
src_tri_np = np.float32(src_tri)
|
| 75 |
dst_tri_np = np.float32(dst_tri)
|
| 76 |
|
| 77 |
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}"
|
| 78 |
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}"
|
| 79 |
|
| 80 |
+
# trying avoid same value,or M will broken
|
|
|
|
| 81 |
if (src_tri_np[0] == src_tri_np[1]).all():
|
| 82 |
+
src_tri_np[0] += min_affin_plus
|
| 83 |
if (src_tri_np[0] == src_tri_np[2]).all():
|
| 84 |
+
src_tri_np[0] += min_affin_plus
|
| 85 |
if (src_tri_np[1] == src_tri_np[2]).all():
|
| 86 |
+
src_tri_np[1] += min_affin_plus
|
| 87 |
if (src_tri_np[1] == src_tri_np[0]).all():
|
| 88 |
+
src_tri_np[1] += min_affin_plus
|
| 89 |
|
| 90 |
+
if (
|
| 91 |
+
(src_tri_np[1] == src_tri_np[0]).all()
|
| 92 |
+
or (src_tri_np[1] == src_tri_np[2]).all()
|
| 93 |
+
or (src_tri_np[2] == src_tri_np[0]).all()
|
| 94 |
+
):
|
| 95 |
print("same will white noise happen")
|
| 96 |
# 透視変換行列の計算
|
| 97 |
M = cv2.getAffineTransform(src_tri_np, dst_tri_np)
|
|
|
|
| 100 |
h_dst, w_dst = dst_img.shape[:2]
|
| 101 |
|
| 102 |
# 元画像から三角形領域を切り抜くマスク生成
|
| 103 |
+
# src_mask = np.zeros((h_src, w_src), dtype=np.uint8)
|
| 104 |
+
# cv2.fillPoly(src_mask, [np.int32(src_tri)], 255)
|
| 105 |
|
| 106 |
# Not 元画像の三角形領域のみをマスクで抽出
|
| 107 |
+
src_triangle = src_img # cv2.bitwise_and(src_img, src_img, mask=src_mask)
|
| 108 |
|
| 109 |
# 変換行列を使って元画像の三角形領域を目標画像のサイズへ変換
|
| 110 |
+
|
|
|
|
| 111 |
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst))
|
| 112 |
if debug_affinn:
|
| 113 |
+
cv2.imwrite("affin_src.jpg", src_triangle)
|
| 114 |
+
cv2.imwrite("affin_transformed.jpg", transformed)
|
| 115 |
|
| 116 |
+
# print(f"dst_img={dst_img.shape}")
|
| 117 |
+
# print(f"transformed={transformed.shape}")
|
| 118 |
# 変換後のマスクの生成
|
| 119 |
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8)
|
| 120 |
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255)
|
| 121 |
|
| 122 |
# ���標画像のマスク領域をクリアするためにデストのインバートマスクを作成
|
| 123 |
+
# dst_mask_inv = cv2.bitwise_not(dst_mask)
|
| 124 |
|
| 125 |
# 目標画像のマスク部分をクリア
|
| 126 |
+
# dst_background = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
|
| 127 |
|
| 128 |
# 変換された元画像の三角形部分と目標画像の背景部分を合成
|
| 129 |
+
# dst_img = cv2.add(dst_background, transformed)
|
| 130 |
+
# s = time.time()
|
| 131 |
+
# dst_img = blend_rgb_images(dst_img,transformed,dst_mask)
|
| 132 |
|
| 133 |
use_blend_rgb = False
|
| 134 |
if use_blend_rgb:
|
| 135 |
+
if src_img.shape[2] == 3:
|
| 136 |
+
dst_img = blend_rgb_images_numba(dst_img, transformed, dst_mask)
|
| 137 |
else:
|
| 138 |
+
dst_img = blend_rgba_images_numba(dst_img, transformed, dst_mask)
|
| 139 |
else:
|
| 140 |
dst_mask_inv = cv2.bitwise_not(dst_mask)
|
| 141 |
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask)
|
|
|
|
| 143 |
dst_img = cv2.add(dst_img, transformed)
|
| 144 |
|
| 145 |
# TODO add rgb mode
|
| 146 |
+
|
| 147 |
+
# print(f"blend {time.time() -s}")
|
|
|
|
| 148 |
if debug_affinn:
|
| 149 |
+
cv2.imwrite("affin_transformed_masked.jpg", transformed)
|
| 150 |
+
cv2.imwrite("affin_dst_mask.jpg", dst_mask)
|
| 151 |
return dst_img
|
| 152 |
|
| 153 |
|
| 154 |
+
from skimage.exposure import match_histograms
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
def color_match(base_image, cropped_image, color_match_format="RGB"):
|
| 158 |
+
reference = np.array(base_image.convert(color_match_format))
|
| 159 |
+
target = np.array(cropped_image.convert(color_match_format))
|
| 160 |
+
matched = match_histograms(target, reference, channel_axis=-1)
|
| 161 |
+
|
| 162 |
+
return Image.fromarray(matched, mode=color_match_format)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def process_landmark_transform(
|
| 166 |
+
image,
|
| 167 |
+
transform_target_image,
|
| 168 |
+
innner_mouth,
|
| 169 |
+
innner_eyes,
|
| 170 |
+
color_matching=False,
|
| 171 |
+
transparent_background=False,
|
| 172 |
+
add_align_mouth=False,
|
| 173 |
+
add_align_eyes=False,
|
| 174 |
+
blur_size=0,
|
| 175 |
+
):
|
| 176 |
+
image_h, image_w = image.shape[:2]
|
| 177 |
+
align_h, align_w = transform_target_image.shape[:2]
|
| 178 |
+
|
| 179 |
+
mp_image, image_face_landmarker_result = extract_landmark(image)
|
| 180 |
+
image_larndmarks = image_face_landmarker_result.face_landmarks
|
| 181 |
+
image_bbox = get_landmark_bbox(image_larndmarks, image_w, image_h, 16, 16)
|
| 182 |
+
|
| 183 |
+
mp_image, align_face_landmarker_result = extract_landmark(transform_target_image)
|
| 184 |
+
align_larndmarks = align_face_landmarker_result.face_landmarks
|
| 185 |
+
align_bbox = get_landmark_bbox(align_larndmarks, align_w, align_h, 16, 16)
|
| 186 |
|
| 187 |
if color_matching:
|
| 188 |
+
image_cropped = crop(image, image_bbox)
|
| 189 |
+
target_cropped = crop(transform_target_image, align_bbox)
|
| 190 |
+
matched = match_histograms(image_cropped, target_cropped, channel_axis=-1)
|
| 191 |
+
paste(image, matched, image_bbox[0], image_bbox[1])
|
|
|
|
| 192 |
|
| 193 |
landmark_points = get_normalized_landmarks(align_larndmarks)
|
| 194 |
+
|
| 195 |
+
mesh_triangle_indices = (
|
| 196 |
+
mp_triangles.mesh_triangle_indices.copy()
|
| 197 |
+
) # using directly sometime share
|
| 198 |
+
|
| 199 |
+
# always mix for blur
|
| 200 |
mesh_triangle_indices += mp_triangles.INNER_MOUTH
|
| 201 |
+
|
| 202 |
+
mesh_triangle_indices += (
|
| 203 |
+
mp_triangles.INNER_LEFT_EYES + mp_triangles.INNER_RIGHT_EYES
|
| 204 |
+
)
|
| 205 |
+
# print(mesh_triangle_indices)
|
| 206 |
+
sort_triangles_by_depth(landmark_points, mesh_triangle_indices)
|
| 207 |
+
|
| 208 |
+
# mesh_triangle_indices = mp_triangles.contour_to_triangles(True,draw_updown_contour) + mp_triangles.contour_to_triangles(False,draw_updown_contour)+ mp_triangles.mesh_triangle_indices
|
| 209 |
|
| 210 |
triangle_size = len(mesh_triangle_indices)
|
| 211 |
+
# print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}")
|
| 212 |
s = time.time()
|
| 213 |
+
|
| 214 |
need_transparent_way = transparent_background == True or blur_size > 0
|
| 215 |
+
if need_transparent_way: # convert Alpha
|
| 216 |
+
transparent_image = np.zeros_like(
|
| 217 |
+
cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA)
|
| 218 |
+
)
|
| 219 |
h, w = transparent_image.shape[:2]
|
| 220 |
+
cv2.rectangle(transparent_image, (0, 0), (w, h), (0, 0, 0, 0), -1)
|
| 221 |
|
| 222 |
applied_image = transparent_image
|
| 223 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
|
| 224 |
+
|
| 225 |
else:
|
| 226 |
applied_image = transform_target_image
|
| 227 |
+
|
| 228 |
+
for i in range(0, triangle_size): #
|
| 229 |
triangle_indices = mesh_triangle_indices[i]
|
| 230 |
+
|
| 231 |
+
image_points = get_pixel_cordinate_list(
|
| 232 |
+
image_larndmarks, triangle_indices, image_w, image_h
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
align_points = get_pixel_cordinate_list(
|
| 236 |
+
align_larndmarks, triangle_indices, align_w, align_h
|
| 237 |
+
)
|
| 238 |
+
# print(image_points)
|
| 239 |
+
# print(align_points)
|
| 240 |
+
# fill_points(image,image_points,thickness=3,fill_color=(0,0,0,0))
|
| 241 |
+
# s = time.time()
|
| 242 |
+
# print(f"applied_image={applied_image.shape}")
|
| 243 |
+
applied_image = apply_affine_transformation_to_triangle(
|
| 244 |
+
image_points, align_points, image, applied_image
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# print(f"take time {time.time()-s}")
|
| 248 |
if need_transparent_way:
|
| 249 |
blur_radius = blur_size
|
| 250 |
+
if blur_radius != 0 and blur_radius % 2 == 0:
|
| 251 |
+
blur_radius += 1
|
| 252 |
+
|
| 253 |
+
b, g, r, a = cv2.split(applied_image)
|
| 254 |
+
applied_image = cv2.merge([b, g, r])
|
| 255 |
mask = a.copy()
|
| 256 |
dilate = blur_radius
|
| 257 |
kernel = np.ones((dilate, dilate), np.uint8)
|
| 258 |
mask = cv2.erode(mask, kernel, iterations=1)
|
| 259 |
|
| 260 |
+
if blur_radius > 0:
|
| 261 |
+
blurred_image = cv2.GaussianBlur(
|
| 262 |
+
mask, (blur_radius, blur_radius), 0
|
| 263 |
+
) # should be odd
|
| 264 |
else:
|
| 265 |
blurred_image = mask
|
| 266 |
|
| 267 |
if transparent_background:
|
| 268 |
+
# transform_target_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
|
| 269 |
+
transform_target_image = cv2.cvtColor(
|
| 270 |
+
transform_target_image, cv2.COLOR_BGR2BGRA
|
| 271 |
+
)
|
| 272 |
+
applied_image = cv2.merge([b, g, r, blurred_image])
|
| 273 |
else:
|
| 274 |
+
applied_image = blend_rgb_images(
|
| 275 |
+
transform_target_image, applied_image, blurred_image
|
| 276 |
+
)
|
| 277 |
|
| 278 |
# after mix
|
| 279 |
+
if (
|
| 280 |
+
not innner_mouth
|
| 281 |
+
or not innner_eyes
|
| 282 |
+
or (transparent_background and (add_align_mouth or add_align_eyes))
|
| 283 |
+
):
|
| 284 |
import mp_constants
|
| 285 |
+
|
| 286 |
+
dst_mask = np.zeros((align_h, align_w), dtype=np.uint8)
|
| 287 |
if not innner_mouth or (transparent_background and add_align_mouth):
|
| 288 |
+
mouth_cordinates = get_pixel_cordinate_list(
|
| 289 |
+
align_larndmarks, mp_constants.LINE_INNER_MOUTH, align_w, align_h
|
| 290 |
+
)
|
| 291 |
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255)
|
| 292 |
|
| 293 |
+
if transparent_background and not add_align_mouth:
|
| 294 |
+
cv2.fillPoly(
|
| 295 |
+
transform_target_image, [np.int32(mouth_cordinates)], [0, 0, 0, 0]
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
if not innner_eyes or (transparent_background and add_align_eyes):
|
| 299 |
+
left_eyes_cordinates = get_pixel_cordinate_list(
|
| 300 |
+
align_larndmarks, mp_constants.LINE_LEFT_INNER_EYES, align_w, align_h
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255)
|
| 304 |
|
| 305 |
+
right_eyes_cordinates = get_pixel_cordinate_list(
|
| 306 |
+
align_larndmarks, mp_constants.LINE_RIGHT_INNER_EYES, align_w, align_h
|
| 307 |
+
)
|
| 308 |
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255)
|
| 309 |
|
| 310 |
+
if transparent_background and not add_align_eyes:
|
| 311 |
+
cv2.fillPoly(
|
| 312 |
+
transform_target_image,
|
| 313 |
+
[np.int32(left_eyes_cordinates)],
|
| 314 |
+
[0, 0, 0, 0],
|
| 315 |
+
)
|
| 316 |
+
cv2.fillPoly(
|
| 317 |
+
transform_target_image,
|
| 318 |
+
[np.int32(right_eyes_cordinates)],
|
| 319 |
+
[0, 0, 0, 0],
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
# cv2.imwrite("deb_transform_target_image.jpg",transform_target_image)
|
| 323 |
+
# cv2.imwrite("deb_dst_mask.jpg",dst_mask)
|
| 324 |
+
# cv2.imwrite("deb_applied_image.jpg",applied_image)
|
| 325 |
+
applied_image = blend_rgba_images_numba(
|
| 326 |
+
applied_image, transform_target_image, dst_mask
|
| 327 |
+
)
|
| 328 |
+
cv2.imwrite("deb_final_transform_target_image.jpg", transform_target_image)
|
| 329 |
|
| 330 |
return applied_image
|
| 331 |
|
| 332 |
|
| 333 |
+
def process_landmark_transform_pil(
|
| 334 |
+
pil_image,
|
| 335 |
+
pil_align_target_image,
|
| 336 |
+
innner_mouth,
|
| 337 |
+
innner_eyes,
|
| 338 |
+
color_matching=False,
|
| 339 |
+
transparent_background=False,
|
| 340 |
+
add_align_mouth=False,
|
| 341 |
+
add_align_eyes=False,
|
| 342 |
+
blur_size=0,
|
| 343 |
+
):
|
| 344 |
image = pil_to_bgr_image(pil_image)
|
| 345 |
align_target_image = pil_to_bgr_image(pil_align_target_image)
|
| 346 |
+
cv_result = process_landmark_transform(
|
| 347 |
+
image,
|
| 348 |
+
align_target_image,
|
| 349 |
+
innner_mouth,
|
| 350 |
+
innner_eyes,
|
| 351 |
+
color_matching,
|
| 352 |
+
transparent_background,
|
| 353 |
+
add_align_mouth,
|
| 354 |
+
add_align_eyes,
|
| 355 |
+
blur_size,
|
| 356 |
+
)
|
| 357 |
if transparent_background:
|
| 358 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA))
|
| 359 |
else:
|
| 360 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB))
|
| 361 |
|
| 362 |
+
|
| 363 |
if __name__ == "__main__":
|
| 364 |
+
# image = Image.open('examples/00002062.jpg')
|
| 365 |
+
# align_target = Image.open('examples/02316230.jpg')
|
| 366 |
+
image = cv2.imread("examples/02316230.jpg") # 元画像
|
| 367 |
+
align_target = cv2.imread("examples/00003245_00.jpg") # 目標画像
|
| 368 |
+
result_img = process_landmark_transform(image, align_target)
|
| 369 |
|
| 370 |
+
cv2.imshow("Transformed Image", result_img)
|
| 371 |
cv2.waitKey(0)
|
| 372 |
cv2.destroyAllWindows()
|
| 373 |
|
| 374 |
+
cv2.imwrite("align.png", result_img)
|