Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
import gradio as gr | |
text_generator = None | |
is_hugging_face = True | |
model_id = "AXCXEPT/phi-4-deepseek-R1K-RL-EZO" | |
model_id = "AXCXEPT/phi-4-open-R1-Distill-EZOv1" | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
huggingface_token = None | |
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
device = "cuda" | |
dtype = torch.bfloat16 | |
dtype = torch.float16 | |
if not huggingface_token: | |
pass | |
print("no HUGGINGFACE_TOKEN if you need set secret ") | |
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) | |
print(model_id,device,dtype) | |
histories = [] | |
#model = None | |
if not is_hugging_face: | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
) | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device) | |
if next(model.parameters()).is_cuda: | |
print("The model is on a GPU") | |
else: | |
print("The model is on a CPU") | |
#print(f"text_generator.device='{text_generator.device}") | |
if str(text_generator.device).strip() == 'cuda': | |
print("The pipeline is using a GPU") | |
else: | |
print("The pipeline is using a CPU") | |
print("initialized") | |
def generate_text(messages): | |
if is_hugging_face:#need everytime initialize for ZeroGPU | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
) | |
model.to(device) | |
question = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
question = tokenizer(question, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) | |
generation_kwargs = dict(question, streamer=streamer, max_new_tokens=200) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
generated_output = "" | |
thread.start() | |
for new_text in streamer: | |
generated_output += new_text | |
yield generated_output | |
generate_text.zerogpu = True | |
def call_generate_text(message, history): | |
# history.append({"role": "user", "content": message}) | |
#print(message) | |
#print(history) | |
messages = history+[{"role":"user","content":message}] | |
try: | |
for text in generate_text(messages): | |
yield text | |
except RuntimeError as e: | |
print(f"An unexpected error occurred: {e}") | |
yield "" | |
demo = gr.ChatInterface(call_generate_text,type="messages") | |
if __name__ == "__main__": | |
demo.launch() |