Spaces:
Runtime error
Runtime error
File size: 2,966 Bytes
8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c 8aaa2cd 0fb257c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import spaces
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from transformers import TextIteratorStreamer
from threading import Thread
import gradio as gr
text_generator = None
is_hugging_face = True
model_id = "AXCXEPT/phi-4-deepseek-R1K-RL-EZO"
model_id = "AXCXEPT/phi-4-open-R1-Distill-EZOv1"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
huggingface_token = None
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
dtype = torch.bfloat16
dtype = torch.float16
if not huggingface_token:
pass
print("no HUGGINGFACE_TOKEN if you need set secret ")
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
print(model_id,device,dtype)
histories = []
#model = None
if not is_hugging_face:
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
if next(model.parameters()).is_cuda:
print("The model is on a GPU")
else:
print("The model is on a CPU")
#print(f"text_generator.device='{text_generator.device}")
if str(text_generator.device).strip() == 'cuda':
print("The pipeline is using a GPU")
else:
print("The pipeline is using a CPU")
print("initialized")
def generate_text(messages):
if is_hugging_face:#need everytime initialize for ZeroGPU
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
model.to(device)
question = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
question = tokenizer(question, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
generation_kwargs = dict(question, streamer=streamer, max_new_tokens=200)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
generated_output = ""
thread.start()
for new_text in streamer:
generated_output += new_text
yield generated_output
generate_text.zerogpu = True
@spaces.GPU(duration=60)
def call_generate_text(message, history):
# history.append({"role": "user", "content": message})
#print(message)
#print(history)
messages = history+[{"role":"user","content":message}]
try:
for text in generate_text(messages):
yield text
except RuntimeError as e:
print(f"An unexpected error occurred: {e}")
yield ""
demo = gr.ChatInterface(call_generate_text,type="messages")
if __name__ == "__main__":
demo.launch() |