File size: 9,148 Bytes
afafd87
 
 
 
26a8369
 
 
1dc4926
eefa060
26a8369
 
 
a3b534b
26a8369
 
 
 
 
 
 
 
fbeaa20
26a8369
 
 
fbeaa20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8369
fbeaa20
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8369
c3b8348
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
e5650ce
 
26a8369
 
c3b8348
 
 
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeaa20
 
 
 
 
 
 
 
 
 
 
26a8369
 
 
fbeaa20
cc67e3b
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeaa20
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeaa20
26a8369
 
 
 
 
 
 
 
 
c3b8348
26a8369
 
 
c3b8348
d4681be
c3b8348
 
 
 
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever

# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import datasets
import os
import json
import subprocess
import sys
import joblib
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple,Dict,Optional
from logger import logging
from exception import CustomExceptionHandling

from smolagents.gradio_ui import GradioUI
from smolagents import (
    CodeAgent,
    GoogleSearchTool,
    Model,
    Tool,
    LiteLLMModel,
    ToolCallingAgent,
    ChatMessage,tool,MessageRole
)

cache_file = "docs_processed.joblib"
if os.path.exists(cache_file):
    docs_processed = joblib.load(cache_file)
    print("Loaded docs_processed from cache.")
else:
    knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
    source_docs = [
        Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
    ]

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=400,
        chunk_overlap=20,
        add_start_index=True,
        strip_whitespace=True,
        separators=["\n\n", "\n", ".", " ", ""],
    )
    docs_processed = text_splitter.split_documents(source_docs)
    joblib.dump(docs_processed, cache_file)
    print("Created and saved docs_processed to cache.")

class RetrieverTool(Tool):
    name = "retriever"
    description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
    inputs = {
        "query": {
            "type": "string",
            "description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
        }
    }
    output_type = "string"

    def __init__(self, docs, **kwargs):
        super().__init__(**kwargs)

        self.retriever = BM25Retriever.from_documents(
            docs,
            k=7,  
        )

    def forward(self, query: str) -> str:
        assert isinstance(query, str), "Your search query must be a string"

        docs = self.retriever.invoke(
            query,
        )
        return "\nRetrieved documents:\n" + "".join(
            [
                f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
                for i, doc in enumerate(docs)
            ]
        )

retriever_tool = RetrieverTool(docs_processed)
# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

hf_hub_download(
    repo_id="bartowski/google_gemma-3-1b-it-GGUF",
    filename="google_gemma-3-1b-it-Q6_K.gguf",
    local_dir="./models",
)
hf_hub_download(
    repo_id="bartowski/google_gemma-3-1b-it-GGUF",
    filename="google_gemma-3-1b-it-Q5_K_M.gguf",
    local_dir="./models",
)

# Set the title and description
title = "Gemma Llama.cpp"
description = """Gemma 3 is a family of lightweight, multimodal open models that offers advanced capabilities like large context windows and multilingual support, enabling diverse applications on various devices."""


llm = None
llm_model = None

def respond(
    message: str,
    history: List[Tuple[str, str]],
    model: str,
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repeat_penalty: float,
):
    """
    Respond to a message using the Gemma3 model via Llama.cpp.

    Args:
        - message (str): The message to respond to.
        - history (List[Tuple[str, str]]): The chat history.
        - model (str): The model to use.
        - system_message (str): The system message to use.
        - max_tokens (int): The maximum number of tokens to generate.
        - temperature (float): The temperature of the model.
        - top_p (float): The top-p of the model.
        - top_k (int): The top-k of the model.
        - repeat_penalty (float): The repetition penalty of the model.

    Returns:
        str: The response to the message.
    """
    try:
        # Load the global variables
        global llm
        global llm_model

        # Load the model
        if llm is None or llm_model != model:
            llm = Llama(
                model_path=f"models/{model}",
                flash_attn=False,
                n_gpu_layers=0,
                n_batch=8,
                n_ctx=2048,
                n_threads=2,
                n_threads_batch=2,
            )
            llm_model = model
        provider = LlamaCppPythonProvider(llm)

        text = retriever_tool(query=f"{message}")

        retriever_system="""
        You are an AI assistant that answers questions based on documents provided by the user.  Wait for the user to send a document. Once you receive the document, carefully read its contents and then answer the following question:

Question: $s

[Wait for user's message containing the document]
        """ % message

        
        # Create the agent
        agent = LlamaCppAgent(
            provider,
            system_prompt=f"{retriever_system}",
            predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
            debug_output=True,
        )

        # Set the settings like temperature, top-k, top-p, max tokens, etc.
        settings = provider.get_provider_default_settings()
        settings.temperature = temperature
        settings.top_k = top_k
        settings.top_p = top_p
        settings.max_tokens = max_tokens
        settings.repeat_penalty = repeat_penalty
        settings.stream = True

        messages = BasicChatHistory()

        # Add the chat history
        for msn in history:
            user = {"role": Roles.user, "content": msn[0]}
            assistant = {"role": Roles.assistant, "content": msn[1]}
            messages.add_message(user)
            messages.add_message(assistant)

        # Get the response stream
        stream = agent.get_chat_response(
            text,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False,
        )

        # Log the success
        logging.info("Response stream generated successfully")

        # Generate the response
        outputs = ""
        for output in stream:
            outputs += output
            yield outputs

    # Handle exceptions that may occur during the process
    except Exception as e:
        # Custom exception handling
        raise CustomExceptionHandling(e, sys) from e


# Create a chat interface
demo = gr.ChatInterface(
    respond,
    examples=[["What is the Transform?"], ["Tell me About Huggng."], ["How to upload dataset?"]],
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Dropdown(
            choices=[
                "google_gemma-3-1b-it-Q6_K.gguf",
                "google_gemma-3-1b-it-Q5_K_M.gguf",
            ],
            value="google_gemma-3-1b-it-Q5_K_M.gguf",
            label="Model",
            info="Select the AI model to use for chat",
        ),
        gr.Textbox(
            value="You are a helpful assistant.",
            label="System Prompt",
            info="Define the AI assistant's personality and behavior",
            lines=2,
        ),
        gr.Slider(
            minimum=512,
            maximum=2048,
            value=1024,
            step=1,
            label="Max Tokens",
            info="Maximum length of response (higher = longer replies)",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.7,
            step=0.1,
            label="Temperature",
            info="Creativity level (higher = more creative, lower = more focused)",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
            info="Nucleus sampling threshold",
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
            info="Limit vocabulary choices to top K tokens",
        ),
        gr.Slider(
            minimum=1.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition Penalty",
            info="Penalize repeated words (higher = less repetition)",
        ),
    ],
    theme="Ocean",
    submit_btn="Send",
    stop_btn="Stop",
    title=title,
    description=description,
    chatbot=gr.Chatbot(scale=1, show_copy_button=True),
    flagging_mode="never",
)


# Launch the chat interface
if __name__ == "__main__":
    demo.launch(debug=False)