File size: 11,885 Bytes
afafd87 26a8369 1dc4926 eefa060 26a8369 a3b534b 26a8369 fbeaa20 26a8369 fbeaa20 f765c86 fbeaa20 26a8369 fbeaa20 26a8369 c3b8348 26a8369 e5650ce 26a8369 c3b8348 a05ab4b 5d6dbe9 5e212b5 5aebc79 a05ab4b 96e57c3 a05ab4b 9952a53 a05ab4b 5e212b5 6a1c1f3 5e212b5 5aebc79 b3ff38e a05ab4b 96e57c3 9952a53 a05ab4b 5d6dbe9 a05ab4b 26a8369 f765c86 26a8369 a05ab4b 5e212b5 f765c86 a05ab4b fbeaa20 3eda58f fbeaa20 9952a53 fbeaa20 1d0e730 7564c84 5d6dbe9 7564c84 1d0e730 7564c84 1d0e730 9952a53 fbeaa20 26a8369 d73eff4 cc67e3b 26a8369 1d0e730 26a8369 5d6dbe9 26a8369 c3b8348 26a8369 c3b8348 d4681be c3b8348 a05ab4b c3b8348 26a8369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import datasets
import os
import json
import subprocess
import sys
import joblib
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple,Dict,Optional
from logger import logging
from exception import CustomExceptionHandling
from smolagents.gradio_ui import GradioUI
from smolagents import (
CodeAgent,
GoogleSearchTool,
Model,
Tool,
LiteLLMModel,
ToolCallingAgent,
ChatMessage,tool,MessageRole
)
cache_file = "docs_processed.joblib"
if os.path.exists(cache_file):
docs_processed = joblib.load(cache_file)
print("Loaded docs_processed from cache.")
else:
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
source_docs = [
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
]
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=50,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = text_splitter.split_documents(source_docs)
joblib.dump(docs_processed, cache_file)
print("Created and saved docs_processed to cache.")
class RetrieverTool(Tool):
name = "retriever"
description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
inputs = {
"query": {
"type": "string",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
}
}
output_type = "string"
def __init__(self, docs, **kwargs):
super().__init__(**kwargs)
self.retriever = BM25Retriever.from_documents(
docs,
k=7,
)
def forward(self, query: str) -> str:
assert isinstance(query, str), "Your search query must be a string"
docs = self.retriever.invoke(
query,
)
return "\nRetrieved documents:\n" + "".join(
[
f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
for i, doc in enumerate(docs)
]
)
retriever_tool = RetrieverTool(docs_processed)
# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
hf_hub_download(
repo_id="bartowski/google_gemma-3-1b-it-GGUF",
filename="google_gemma-3-1b-it-Q6_K.gguf",
local_dir="./models",
)
hf_hub_download(
repo_id="bartowski/google_gemma-3-1b-it-GGUF",
filename="google_gemma-3-1b-it-Q5_K_M.gguf",
local_dir="./models",
)
# Set the title and description
title = "Gemma Llama.cpp"
description = """Gemma 3 is a family of lightweight, multimodal open models that offers advanced capabilities like large context windows and multilingual support, enabling diverse applications on various devices."""
llm = None
llm_model = None
query_system = """
You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval.
The goal is to identify the most important keywords for a search engine.
Here are some examples:
User Question: What is transformer?
Search Query: transformer
User Question: How does a transformer model work in natural language processing?
Search Query: transformer model natural language processing
User Question: What are the advantages of using transformers over recurrent neural networks?
Search Query: transformer vs recurrent neural network advantages
User Question: Explain the attention mechanism in transformers.
Search Query: transformer attention mechanism
User Question: What are the different types of transformer architectures?
Search Query: transformer architectures
User Question: What is the history of the transformer model?
Search Query: transformer model history
"""
def clean_text(text):
cleaned = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII chars
cleaned = re.sub(r'[^a-zA-Z0-9_\- ]', '', cleaned) #Then your original rule
return cleaned
def to_query(provider,question):
print(f"<question> = {question}")
print(f"<query sytem> = {query_system}")
try:
query_agent = LlamaCppAgent(
provider,
system_prompt=f"{query_system}",
#system_prompt="you are kind assistant",
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
debug_output=True,
)
message="""
Now, rewrite the following question:
User Question: %s
Search Query:
"""%question
print("<message>")
print(message)
settings = provider.get_provider_default_settings()
messages = BasicChatHistory()
result = query_agent.get_chat_response(
#query_system+message,
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
print_output=False,
)
return clean_text(result)
except Exception as e:
# Custom exception handling
raise CustomExceptionHandling(e, sys) from e
def respond(
message: str,
history: List[Tuple[str, str]],
model: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repeat_penalty: float,
):
"""
Respond to a message using the Gemma3 model via Llama.cpp.
Args:
- message (str): The message to respond to.
- history (List[Tuple[str, str]]): The chat history.
- model (str): The model to use.
- system_message (str): The system message to use.
- max_tokens (int): The maximum number of tokens to generate.
- temperature (float): The temperature of the model.
- top_p (float): The top-p of the model.
- top_k (int): The top-k of the model.
- repeat_penalty (float): The repetition penalty of the model.
Returns:
str: The response to the message.
"""
try:
# Load the global variables
global llm
global llm_model
# Load the model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=False,
n_gpu_layers=0,
n_batch=8,
n_ctx=2048,
n_threads=2,
n_threads_batch=2,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
query = to_query(provider,message)
print("<query>")
print(f"from {message} to {query}")
text = retriever_tool(query=f"{query}")
retriever_system="""
You are an AI assistant that answers questions based on documents provided by the user. Wait for the user to send a document. Once you receive the document, carefully read its contents and then answer the following question:
Question: %s
Document:
""" % message
retriever_system="""
You are an AI assistant that answers questions based on below retrievered documents.
Documents:
---
%s
---
Question: %s
Answer:
""" % (text,message)
#[Wait for user's document]
# Create the agent
agent = LlamaCppAgent(
provider,
#system_prompt=f"{retriever_system}",
system_prompt="you are kind assistant",
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
debug_output=True,
)
# Set the settings like temperature, top-k, top-p, max tokens, etc.
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add the chat history
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Get the response stream
stream = agent.get_chat_response(
retriever_system,
#retriever_system+text,
#retriever_system+text,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
# Log the success
logging.info("Response stream generated successfully")
# Generate the response
outputs = ""
for output in stream:
outputs += output
yield outputs
# Handle exceptions that may occur during the process
except Exception as e:
# Custom exception handling
raise CustomExceptionHandling(e, sys) from e
# Create a chat interface
demo = gr.ChatInterface(
respond,
examples=[["What is the Diffuser?"], ["Tell me About Huggingface."], ["How to upload dataset?"]],
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Dropdown(
choices=[
"google_gemma-3-1b-it-Q6_K.gguf",
"google_gemma-3-1b-it-Q5_K_M.gguf",
],
value="google_gemma-3-1b-it-Q5_K_M.gguf",
label="Model",
info="Select the AI model to use for chat",
),
gr.Textbox(
value="You are a helpful assistant.",
label="System Prompt",
info="Define the AI assistant's personality and behavior",
lines=2,visible=False
),
gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=1,
label="Max Tokens",
info="Maximum length of response (higher = longer replies)",
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity level (higher = more creative, lower = more focused)",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold",
),
gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top-k",
info="Limit vocabulary choices to top K tokens",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Penalize repeated words (higher = less repetition)",
),
],
theme="Ocean",
submit_btn="Send",
stop_btn="Stop",
title=title,
description=description,
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
flagging_mode="never",
)
# Launch the chat interface
if __name__ == "__main__":
demo.launch(debug=False)
|