File size: 10,507 Bytes
399be2b 26a8369 58e6047 26a8369 58e6047 eefa060 26a8369 58e6047 26a8369 58e6047 5d26a64 58e6047 26a8369 58e6047 26a8369 58e6047 26a8369 c3b8348 26a8369 58e6047 26a8369 24afc82 26a8369 58e6047 217bb15 58e6047 019dd5c 58e6047 26a8369 ce86b70 58e6047 26a8369 ce86b70 58e6047 4d69435 58e6047 26a8369 4d69435 58e6047 217bb15 58e6047 217bb15 58e6047 217bb15 58e6047 4d69435 58e6047 4d69435 58e6047 26a8369 58e6047 ce86b70 58e6047 26a8369 58e6047 48aff66 58e6047 d43466a 58e6047 043a173 58e6047 d690fe7 6ed582c 58e6047 9c9c445 58e6047 d690fe7 26a8369 58e6047 26a8369 58e6047 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# "Since it's an almost example, it probably won't be affected by a license."
# Importing required libraries
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
import warnings
warnings.filterwarnings("ignore")
import datasets
import os
import json
import subprocess
import sys
import joblib
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings
from llama_cpp_agent.messages_formatter import MessagesFormatter, PromptMarkers
import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple,Dict,Optional
from logger import logging
from exception import CustomExceptionHandling
from smolagents.gradio_ui import GradioUI
from smolagents import (
CodeAgent,
GoogleSearchTool,
Model,
Tool,
LiteLLMModel,
ToolCallingAgent,
ChatMessage,tool,MessageRole
)
cache_file = "docs_processed.joblib"
if os.path.exists(cache_file):
docs_processed = joblib.load(cache_file)
print("Loaded docs_processed from cache.")
else:
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
source_docs = [
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
]
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=20,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = text_splitter.split_documents(source_docs)
joblib.dump(docs_processed, cache_file)
print("Created and saved docs_processed to cache.")
class RetrieverTool(Tool):
name = "retriever"
description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
inputs = {
"query": {
"type": "string",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
}
}
output_type = "string"
def __init__(self, docs, **kwargs):
super().__init__(**kwargs)
self.retriever = BM25Retriever.from_documents(
docs,
k=7,
)
def forward(self, query: str) -> str:
assert isinstance(query, str), "Your search query must be a string"
docs = self.retriever.invoke(
query,
)
return "\nRetrieved documents:\n" + "".join(
[
f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
for i, doc in enumerate(docs)
]
)
# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
os.makedirs("models",exist_ok=True)
logging.info("start download")
hf_hub_download(
repo_id="bartowski/google_gemma-3-4b-it-GGUF",
filename="google_gemma-3-4b-it-Q4_K_M.gguf",
local_dir="./models",
)
retriever_tool = RetrieverTool(docs_processed)
# Define the prompt markers for Gemma 3
gemma_3_prompt_markers = {
Roles.system: PromptMarkers("", "\n"), # System prompt should be included within user message
Roles.user: PromptMarkers("<start_of_turn>user\n", "<end_of_turn>\n"),
Roles.assistant: PromptMarkers("<start_of_turn>model\n", "<end_of_turn>\n"),
Roles.tool: PromptMarkers("", ""), # If you need tool support
}
# Create the formatter
gemma_3_formatter = MessagesFormatter(
pre_prompt="", # No pre-prompt
prompt_markers=gemma_3_prompt_markers,
include_sys_prompt_in_first_user_message=True, # Include system prompt in first user message
default_stop_sequences=["<end_of_turn>", "<start_of_turn>"],
strip_prompt=False, # Don't strip whitespace from the prompt
bos_token="<bos>", # Beginning of sequence token for Gemma 3
eos_token="<eos>", # End of sequence token for Gemma 3
)
# based https://github.com/huggingface/smolagents/pull/450
# almost overwrite with https://huggingface.co/spaces/sitammeur/Gemma-llamacpp
class LlamaCppModel(Model):
def __init__(
self,
model_path: Optional[str] = None,
repo_id: Optional[str] = None,
filename: Optional[str] = None,
n_gpu_layers: int = 0,
n_ctx: int = 8192,
max_tokens: int = 1024,
verbose:bool = False,
**kwargs,
):
"""
Initializes the LlamaCppModel.
Parameters:
model_path (str, optional): Path to the local model file.
repo_id (str, optional): Hugging Face repository ID if loading from Hugging Face.
filename (str, optional): Specific filename to load from the repository.
n_gpu_layers (int, default=0): Number of GPU layers to use.
n_ctx (int, default=8192): Context size for the model.
**kwargs: Additional keyword arguments.
Raises:
ValueError: If neither model_path nor repo_id+filename are provided.
"""
from llama_cpp import Llama
super().__init__(**kwargs)
self.flatten_messages_as_text=True
self.max_tokens = max_tokens
if model_path:
self.llm = Llama(
model_path=model_path,
flash_attn=False,
n_gpu_layers=0,
#n_batch=1024,
n_ctx=n_ctx,
n_threads=2,
n_threads_batch=2,verbose=False
)
elif repo_id and filename:
self.llm = Llama.from_pretrained(
repo_id=repo_id,
filename=filename,
n_gpu_layers=n_gpu_layers,
n_ctx=n_ctx,
max_tokens=max_tokens,
verbose=verbose,
**kwargs
)
else:
raise ValueError("Must provide either model_path or repo_id+filename")
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
tools_to_call_from: Optional[List[Tool]] = None,
**kwargs,
) -> ChatMessage:
from llama_cpp import LlamaGrammar
try:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
grammar=grammar,
tools_to_call_from=tools_to_call_from,
**kwargs
)
if not tools_to_call_from:
completion_kwargs.pop("tools", None)
completion_kwargs.pop("tool_choice", None)
filtered_kwargs = {
k: v for k, v in completion_kwargs.items()
if k not in ["messages", "stop", "grammar", "max_tokens", "tools_to_call_from"]
}
max_tokens = (
kwargs.get("max_tokens")
or self.max_tokens
or 1024
)
provider = LlamaCppPythonProvider(self.llm)
system_message= completion_kwargs["messages"][0]["content"]
message= completion_kwargs["messages"].pop()["content"]
# Create the agent
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
custom_messages_formatter=gemma_3_formatter,
debug_output=True,
)
temperature = 0.5
top_k=40
top_p=0.95
max_tokens=2048
repeat_penalty=1.1
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = False
messages = BasicChatHistory()
for from_message in completion_kwargs["messages"]:
if from_message["role"] is MessageRole.USER:
history_message = {"role": MessageRole.USER, "content": from_message["content"]}
elif from_message["role"] is MessageRole.SYSTEM:
history_message = {"role": MessageRole.SYSTEM, "content": from_message["content"]}
else:
history_message = {"role": MessageRole.ASSISTANT, "content": from_message["content"]}
messages.add_message(from_message)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
print_output=False,
)
content = stream
message = ChatMessage(role=MessageRole.ASSISTANT, content=content)
if tools_to_call_from is not None:
return super.parse_tool_args_if_needed(message)
return message
except Exception as e:
logging.error(f"Model error: {e}")
return ChatMessage(role="assistant", content=f"Error: {str(e)}")
model = LlamaCppModel(
model_path = "models/google_gemma-3-4b-it-Q4_K_M.gguf",
n_ctx=8192,verbose=False
)
import yaml
with open("retriever.yaml", "r") as f:
prompt = f.read()
description="""
*CPU Rag Example with LlamaCpp*
Take a few minute.customized prompt is the key.
Reference
- [Qwen2.5-0.5B-Rag-Thinking](https://huggingface.co/spaces/Akjava/Qwen2.5-0.5B-Rag-Thinking-Flan-T5)
- [smolagents pull-450](https://github.com/huggingface/smolagents/pull/450)
- [Gemma-llamacpp](https://huggingface.co/spaces/sitammeur/Gemma-llamacpp)
- [Dataset(m-ric/huggingface_doc)](https://huggingface.co/datasets/m-ric/huggingface_doc)
"""
agent = CodeAgent(prompt_templates =yaml.safe_load(prompt),model=model, tools=[retriever_tool],max_steps=1,verbosity_level=0,name="AGENT",description=description)
demo = GradioUI(agent)
if __name__ == "__main__":
demo.launch() |