File size: 10,507 Bytes
399be2b
26a8369
58e6047
 
 
 
26a8369
 
58e6047
eefa060
26a8369
 
 
58e6047
26a8369
 
 
 
 
 
58e6047
5d26a64
58e6047
26a8369
 
58e6047
26a8369
 
 
58e6047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8369
 
c3b8348
26a8369
58e6047
 
 
26a8369
24afc82
 
26a8369
 
 
58e6047
 
217bb15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e6047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
019dd5c
58e6047
 
 
 
 
 
 
 
26a8369
 
ce86b70
58e6047
26a8369
ce86b70
58e6047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d69435
58e6047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8369
 
4d69435
58e6047
 
 
 
 
 
 
217bb15
58e6047
 
217bb15
58e6047
 
217bb15
58e6047
 
 
 
 
 
 
 
 
4d69435
58e6047
 
 
 
 
 
 
 
 
4d69435
58e6047
26a8369
 
 
58e6047
ce86b70
58e6047
 
 
 
 
26a8369
58e6047
 
 
 
 
 
 
 
 
48aff66
58e6047
 
 
 
d43466a
58e6047
 
 
 
043a173
58e6047
 
d690fe7
6ed582c
58e6047
9c9c445
58e6047
 
d690fe7
26a8369
58e6047
26a8369
 
58e6047
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# "Since it's an almost example, it probably won't be affected by a license."
# Importing required libraries
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever

import warnings
warnings.filterwarnings("ignore")
import datasets
import os
import json
import subprocess
import sys
import joblib
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings
from llama_cpp_agent.messages_formatter import MessagesFormatter, PromptMarkers

import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple,Dict,Optional
from logger import logging
from exception import CustomExceptionHandling

from smolagents.gradio_ui import GradioUI
from smolagents import (
    CodeAgent,
    GoogleSearchTool,
    Model,
    Tool,
    LiteLLMModel,
    ToolCallingAgent,
    ChatMessage,tool,MessageRole
)

cache_file = "docs_processed.joblib"
if os.path.exists(cache_file):
    docs_processed = joblib.load(cache_file)
    print("Loaded docs_processed from cache.")
else:
    knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
    source_docs = [
        Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
    ]

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=400,
        chunk_overlap=20,
        add_start_index=True,
        strip_whitespace=True,
        separators=["\n\n", "\n", ".", " ", ""],
    )
    docs_processed = text_splitter.split_documents(source_docs)
    joblib.dump(docs_processed, cache_file)
    print("Created and saved docs_processed to cache.")

class RetrieverTool(Tool):
    name = "retriever"
    description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
    inputs = {
        "query": {
            "type": "string",
            "description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
        }
    }
    output_type = "string"

    def __init__(self, docs, **kwargs):
        super().__init__(**kwargs)

        self.retriever = BM25Retriever.from_documents(
            docs,
            k=7,  
        )

    def forward(self, query: str) -> str:
        assert isinstance(query, str), "Your search query must be a string"

        docs = self.retriever.invoke(
            query,
        )
        return "\nRetrieved documents:\n" + "".join(
            [
                f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
                for i, doc in enumerate(docs)
            ]
        )



# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

os.makedirs("models",exist_ok=True)

logging.info("start download")
hf_hub_download(
    repo_id="bartowski/google_gemma-3-4b-it-GGUF",
    filename="google_gemma-3-4b-it-Q4_K_M.gguf",
    local_dir="./models",
)

retriever_tool = RetrieverTool(docs_processed)

# Define the prompt markers for Gemma 3
gemma_3_prompt_markers = {
    Roles.system: PromptMarkers("", "\n"),  # System prompt should be included within user message
    Roles.user: PromptMarkers("<start_of_turn>user\n", "<end_of_turn>\n"),
    Roles.assistant: PromptMarkers("<start_of_turn>model\n", "<end_of_turn>\n"),
    Roles.tool: PromptMarkers("", ""),  # If you need tool support
}





# Create the formatter
gemma_3_formatter = MessagesFormatter(
    pre_prompt="",  # No pre-prompt
    prompt_markers=gemma_3_prompt_markers,
    include_sys_prompt_in_first_user_message=True,  # Include system prompt in first user message
    default_stop_sequences=["<end_of_turn>", "<start_of_turn>"],
    strip_prompt=False,  # Don't strip whitespace from the prompt
    bos_token="<bos>",  # Beginning of sequence token for Gemma 3
    eos_token="<eos>",  # End of sequence token for Gemma 3
)

# based https://github.com/huggingface/smolagents/pull/450
# almost overwrite with https://huggingface.co/spaces/sitammeur/Gemma-llamacpp
class LlamaCppModel(Model):
    def __init__(
        self,
        model_path: Optional[str] = None,
        repo_id: Optional[str] = None,
        filename: Optional[str] = None,
        n_gpu_layers: int = 0,
        n_ctx: int = 8192,
        max_tokens: int = 1024,
        verbose:bool = False,
        **kwargs,
    ):
        """
        Initializes the LlamaCppModel.

        Parameters:
            model_path (str, optional): Path to the local model file.
            repo_id (str, optional): Hugging Face repository ID if loading from Hugging Face.
            filename (str, optional): Specific filename to load from the repository.
            n_gpu_layers (int, default=0): Number of GPU layers to use.
            n_ctx (int, default=8192): Context size for the model.
            **kwargs: Additional keyword arguments.
        Raises:
            ValueError: If neither model_path nor repo_id+filename are provided.
        """
        from llama_cpp import Llama
        

        super().__init__(**kwargs)
        self.flatten_messages_as_text=True
        self.max_tokens = max_tokens

        if model_path:
            self.llm = Llama(
                model_path=model_path,
                flash_attn=False,
                n_gpu_layers=0,
                #n_batch=1024,
                n_ctx=n_ctx,
                n_threads=2,
                n_threads_batch=2,verbose=False
            )
            
        elif repo_id and filename:
            self.llm = Llama.from_pretrained(
                repo_id=repo_id,
                filename=filename,
                n_gpu_layers=n_gpu_layers,
                n_ctx=n_ctx,
                max_tokens=max_tokens,
                verbose=verbose,
                **kwargs
            )
        else:
            raise ValueError("Must provide either model_path or repo_id+filename")

    def __call__(
        self,
        messages: List[Dict[str, str]],
        stop_sequences: Optional[List[str]] = None,
        grammar: Optional[str] = None,
        tools_to_call_from: Optional[List[Tool]] = None,
        **kwargs,
    ) -> ChatMessage:
        

        
        from llama_cpp import LlamaGrammar
        try:
            completion_kwargs = self._prepare_completion_kwargs(
                messages=messages,
                stop_sequences=stop_sequences,
                grammar=grammar,
                tools_to_call_from=tools_to_call_from,
                **kwargs
            )

            if not tools_to_call_from:
                completion_kwargs.pop("tools", None)
                completion_kwargs.pop("tool_choice", None)

            filtered_kwargs = {
                k: v for k, v in completion_kwargs.items()
                if k not in ["messages", "stop", "grammar", "max_tokens", "tools_to_call_from"]
            }
            max_tokens = (
            kwargs.get("max_tokens")
            or self.max_tokens  
            or 1024 
            )

            provider = LlamaCppPythonProvider(self.llm)
            system_message= completion_kwargs["messages"][0]["content"]
            message= completion_kwargs["messages"].pop()["content"]
            
            # Create the agent
            agent = LlamaCppAgent(
                provider,
                system_prompt=f"{system_message}",
                custom_messages_formatter=gemma_3_formatter,
                debug_output=True,
            )
            temperature = 0.5
            top_k=40
            top_p=0.95
            max_tokens=2048
            repeat_penalty=1.1
            settings = provider.get_provider_default_settings()
            settings.temperature = temperature
            settings.top_k = top_k
            settings.top_p = top_p
            settings.max_tokens = max_tokens
            settings.repeat_penalty = repeat_penalty
            settings.stream = False

            
            messages = BasicChatHistory()
            for from_message in completion_kwargs["messages"]:
                if from_message["role"] is MessageRole.USER:
                    history_message = {"role": MessageRole.USER, "content": from_message["content"]}
                elif from_message["role"] is MessageRole.SYSTEM:
                    history_message = {"role": MessageRole.SYSTEM, "content": from_message["content"]}
                else:
                    history_message = {"role": MessageRole.ASSISTANT, "content": from_message["content"]}
                messages.add_message(from_message)
     
            stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=False,
            print_output=False, 
            
            )
            
            content = stream
            message = ChatMessage(role=MessageRole.ASSISTANT, content=content)

            if tools_to_call_from is not None:
                return super.parse_tool_args_if_needed(message)
            return message
        except Exception as e:
            logging.error(f"Model error: {e}")
            return ChatMessage(role="assistant", content=f"Error: {str(e)}")
            

model = LlamaCppModel(
        model_path = "models/google_gemma-3-4b-it-Q4_K_M.gguf",
        n_ctx=8192,verbose=False
    )

import yaml
with open("retriever.yaml", "r") as f:
    prompt = f.read()

description="""
*CPU Rag Example with LlamaCpp*
Take a few minute.customized prompt is the key.

Reference
- [Qwen2.5-0.5B-Rag-Thinking](https://huggingface.co/spaces/Akjava/Qwen2.5-0.5B-Rag-Thinking-Flan-T5)
- [smolagents pull-450](https://github.com/huggingface/smolagents/pull/450)
- [Gemma-llamacpp](https://huggingface.co/spaces/sitammeur/Gemma-llamacpp)
- [Dataset(m-ric/huggingface_doc)](https://huggingface.co/datasets/m-ric/huggingface_doc)

"""
agent = CodeAgent(prompt_templates =yaml.safe_load(prompt),model=model, tools=[retriever_tool],max_steps=1,verbosity_level=0,name="AGENT",description=description)

demo = GradioUI(agent)

if __name__ == "__main__":
    demo.launch()