Update app.py
Browse files
app.py
CHANGED
@@ -1,217 +1,283 @@
|
|
1 |
# Importing required libraries
|
|
|
|
|
|
|
|
|
2 |
import warnings
|
3 |
warnings.filterwarnings("ignore")
|
4 |
-
|
5 |
import os
|
6 |
import json
|
7 |
import subprocess
|
8 |
import sys
|
|
|
9 |
from llama_cpp import Llama
|
10 |
from llama_cpp_agent import LlamaCppAgent
|
11 |
from llama_cpp_agent import MessagesFormatterType
|
12 |
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
13 |
from llama_cpp_agent.chat_history import BasicChatHistory
|
14 |
from llama_cpp_agent.chat_history.messages import Roles
|
|
|
|
|
15 |
import gradio as gr
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
-
from typing import List, Tuple
|
18 |
from logger import logging
|
19 |
from exception import CustomExceptionHandling
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Download gguf model files
|
23 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
local_dir="./models",
|
29 |
-
)
|
30 |
hf_hub_download(
|
31 |
repo_id="bartowski/google_gemma-3-1b-it-GGUF",
|
32 |
filename="google_gemma-3-1b-it-Q5_K_M.gguf",
|
33 |
local_dir="./models",
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
global llm_model
|
76 |
-
|
77 |
-
# Load the model
|
78 |
-
if llm is None or llm_model != model:
|
79 |
-
llm = Llama(
|
80 |
-
model_path=f"models/{model}",
|
81 |
flash_attn=False,
|
82 |
n_gpu_layers=0,
|
83 |
n_batch=8,
|
84 |
-
n_ctx=
|
85 |
n_threads=2,
|
86 |
-
n_threads_batch=2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
-
llm_model = model
|
89 |
-
provider = LlamaCppPythonProvider(llm)
|
90 |
-
|
91 |
-
# Create the agent
|
92 |
-
agent = LlamaCppAgent(
|
93 |
-
provider,
|
94 |
-
system_prompt=f"{system_message}",
|
95 |
-
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
|
96 |
-
debug_output=True,
|
97 |
-
)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
message,
|
120 |
llm_sampling_settings=settings,
|
121 |
chat_history=messages,
|
122 |
-
returns_streaming_generator=
|
123 |
-
print_output=
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
value="google_gemma-3-1b-it-Q5_K_M.gguf",
|
155 |
-
label="Model",
|
156 |
-
info="Select the AI model to use for chat",
|
157 |
-
),
|
158 |
-
gr.Textbox(
|
159 |
-
value="You are a helpful assistant.",
|
160 |
-
label="System Prompt",
|
161 |
-
info="Define the AI assistant's personality and behavior",
|
162 |
-
lines=2,
|
163 |
-
),
|
164 |
-
gr.Slider(
|
165 |
-
minimum=512,
|
166 |
-
maximum=2048,
|
167 |
-
value=1024,
|
168 |
-
step=1,
|
169 |
-
label="Max Tokens",
|
170 |
-
info="Maximum length of response (higher = longer replies)",
|
171 |
-
),
|
172 |
-
gr.Slider(
|
173 |
-
minimum=0.1,
|
174 |
-
maximum=2.0,
|
175 |
-
value=0.7,
|
176 |
-
step=0.1,
|
177 |
-
label="Temperature",
|
178 |
-
info="Creativity level (higher = more creative, lower = more focused)",
|
179 |
-
),
|
180 |
-
gr.Slider(
|
181 |
-
minimum=0.1,
|
182 |
-
maximum=1.0,
|
183 |
-
value=0.95,
|
184 |
-
step=0.05,
|
185 |
-
label="Top-p",
|
186 |
-
info="Nucleus sampling threshold",
|
187 |
-
),
|
188 |
-
gr.Slider(
|
189 |
-
minimum=1,
|
190 |
-
maximum=100,
|
191 |
-
value=40,
|
192 |
-
step=1,
|
193 |
-
label="Top-k",
|
194 |
-
info="Limit vocabulary choices to top K tokens",
|
195 |
-
),
|
196 |
-
gr.Slider(
|
197 |
-
minimum=1.0,
|
198 |
-
maximum=2.0,
|
199 |
-
value=1.1,
|
200 |
-
step=0.1,
|
201 |
-
label="Repetition Penalty",
|
202 |
-
info="Penalize repeated words (higher = less repetition)",
|
203 |
-
),
|
204 |
-
],
|
205 |
-
theme="Ocean",
|
206 |
-
submit_btn="Send",
|
207 |
-
stop_btn="Stop",
|
208 |
-
title=title,
|
209 |
-
description=description,
|
210 |
-
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
|
211 |
-
flagging_mode="never",
|
212 |
-
)
|
213 |
|
|
|
214 |
|
215 |
-
# Launch the chat interface
|
216 |
if __name__ == "__main__":
|
217 |
-
demo.launch(
|
|
|
1 |
# Importing required libraries
|
2 |
+
from langchain.docstore.document import Document
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.retrievers import BM25Retriever
|
5 |
+
|
6 |
import warnings
|
7 |
warnings.filterwarnings("ignore")
|
8 |
+
import datasets
|
9 |
import os
|
10 |
import json
|
11 |
import subprocess
|
12 |
import sys
|
13 |
+
import joblib
|
14 |
from llama_cpp import Llama
|
15 |
from llama_cpp_agent import LlamaCppAgent
|
16 |
from llama_cpp_agent import MessagesFormatterType
|
17 |
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
18 |
from llama_cpp_agent.chat_history import BasicChatHistory
|
19 |
from llama_cpp_agent.chat_history.messages import Roles
|
20 |
+
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings
|
21 |
+
|
22 |
import gradio as gr
|
23 |
from huggingface_hub import hf_hub_download
|
24 |
+
from typing import List, Tuple,Dict,Optional
|
25 |
from logger import logging
|
26 |
from exception import CustomExceptionHandling
|
27 |
|
28 |
+
from smolagents.gradio_ui import GradioUI
|
29 |
+
from smolagents import (
|
30 |
+
CodeAgent,
|
31 |
+
GoogleSearchTool,
|
32 |
+
Model,
|
33 |
+
Tool,
|
34 |
+
LiteLLMModel,
|
35 |
+
ToolCallingAgent,
|
36 |
+
ChatMessage,tool,MessageRole
|
37 |
+
)
|
38 |
+
|
39 |
+
cache_file = "docs_processed.joblib"
|
40 |
+
if os.path.exists(cache_file):
|
41 |
+
docs_processed = joblib.load(cache_file)
|
42 |
+
print("Loaded docs_processed from cache.")
|
43 |
+
else:
|
44 |
+
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
|
45 |
+
source_docs = [
|
46 |
+
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
|
47 |
+
]
|
48 |
+
|
49 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
50 |
+
chunk_size=400,
|
51 |
+
chunk_overlap=20,
|
52 |
+
add_start_index=True,
|
53 |
+
strip_whitespace=True,
|
54 |
+
separators=["\n\n", "\n", ".", " ", ""],
|
55 |
+
)
|
56 |
+
docs_processed = text_splitter.split_documents(source_docs)
|
57 |
+
joblib.dump(docs_processed, cache_file)
|
58 |
+
print("Created and saved docs_processed to cache.")
|
59 |
+
|
60 |
+
class RetrieverTool(Tool):
|
61 |
+
name = "retriever"
|
62 |
+
description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
|
63 |
+
inputs = {
|
64 |
+
"query": {
|
65 |
+
"type": "string",
|
66 |
+
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
|
67 |
+
}
|
68 |
+
}
|
69 |
+
output_type = "string"
|
70 |
+
|
71 |
+
def __init__(self, docs, **kwargs):
|
72 |
+
super().__init__(**kwargs)
|
73 |
+
|
74 |
+
self.retriever = BM25Retriever.from_documents(
|
75 |
+
docs,
|
76 |
+
k=7,
|
77 |
+
)
|
78 |
+
|
79 |
+
def forward(self, query: str) -> str:
|
80 |
+
assert isinstance(query, str), "Your search query must be a string"
|
81 |
+
|
82 |
+
docs = self.retriever.invoke(
|
83 |
+
query,
|
84 |
+
)
|
85 |
+
return "\nRetrieved documents:\n" + "".join(
|
86 |
+
[
|
87 |
+
f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
|
88 |
+
for i, doc in enumerate(docs)
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
|
94 |
# Download gguf model files
|
95 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
96 |
|
97 |
+
os.makedirs("models",exist_ok=True)
|
98 |
+
|
99 |
+
logging.info("start download")
|
|
|
|
|
100 |
hf_hub_download(
|
101 |
repo_id="bartowski/google_gemma-3-1b-it-GGUF",
|
102 |
filename="google_gemma-3-1b-it-Q5_K_M.gguf",
|
103 |
local_dir="./models",
|
104 |
)
|
105 |
|
106 |
+
retriever_tool = RetrieverTool(docs_processed)
|
107 |
+
|
108 |
+
# based https://github.com/huggingface/smolagents/pull/450
|
109 |
+
# almost overwrite with https://huggingface.co/spaces/sitammeur/Gemma-llamacpp
|
110 |
+
class LlamaCppModel(Model):
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
model_path: Optional[str] = None,
|
114 |
+
repo_id: Optional[str] = None,
|
115 |
+
filename: Optional[str] = None,
|
116 |
+
n_gpu_layers: int = 0,
|
117 |
+
n_ctx: int = 8192,
|
118 |
+
max_tokens: int = 1024,
|
119 |
+
verbose:bool = False,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
"""
|
123 |
+
Initializes the LlamaCppModel.
|
124 |
+
|
125 |
+
Parameters:
|
126 |
+
model_path (str, optional): Path to the local model file.
|
127 |
+
repo_id (str, optional): Hugging Face repository ID if loading from Hugging Face.
|
128 |
+
filename (str, optional): Specific filename to load from the repository.
|
129 |
+
n_gpu_layers (int, default=0): Number of GPU layers to use.
|
130 |
+
n_ctx (int, default=8192): Context size for the model.
|
131 |
+
**kwargs: Additional keyword arguments.
|
132 |
+
Raises:
|
133 |
+
ValueError: If neither model_path nor repo_id+filename are provided.
|
134 |
+
"""
|
135 |
+
from llama_cpp import Llama
|
136 |
+
print("init2")
|
137 |
+
|
138 |
+
super().__init__(**kwargs)
|
139 |
+
self.flatten_messages_as_text=True
|
140 |
+
self.max_tokens = max_tokens
|
141 |
+
|
142 |
+
if model_path:
|
143 |
+
self.llm = Llama(
|
144 |
+
model_path=model_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
flash_attn=False,
|
146 |
n_gpu_layers=0,
|
147 |
n_batch=8,
|
148 |
+
n_ctx=n_ctx,
|
149 |
n_threads=2,
|
150 |
+
n_threads_batch=2,verbose=False
|
151 |
+
)
|
152 |
+
|
153 |
+
elif repo_id and filename:
|
154 |
+
self.llm = Llama.from_pretrained(
|
155 |
+
repo_id=repo_id,
|
156 |
+
filename=filename,
|
157 |
+
n_gpu_layers=n_gpu_layers,
|
158 |
+
n_ctx=n_ctx,
|
159 |
+
max_tokens=max_tokens,
|
160 |
+
verbose=verbose,
|
161 |
+
**kwargs
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
raise ValueError("Must provide either model_path or repo_id+filename")
|
165 |
+
|
166 |
+
def __call__(
|
167 |
+
self,
|
168 |
+
messages: List[Dict[str, str]],
|
169 |
+
stop_sequences: Optional[List[str]] = None,
|
170 |
+
grammar: Optional[str] = None,
|
171 |
+
tools_to_call_from: Optional[List[Tool]] = None,
|
172 |
+
**kwargs,
|
173 |
+
) -> ChatMessage:
|
174 |
+
|
175 |
+
"""
|
176 |
+
Generates a response from the llama.cpp model and integrates tool usage *only if tools are provided*.
|
177 |
+
"""
|
178 |
+
|
179 |
+
from llama_cpp import LlamaGrammar
|
180 |
+
try:
|
181 |
+
completion_kwargs = self._prepare_completion_kwargs(
|
182 |
+
messages=messages,
|
183 |
+
stop_sequences=stop_sequences,
|
184 |
+
grammar=grammar,
|
185 |
+
tools_to_call_from=tools_to_call_from,
|
186 |
+
#flatten_messages_as_text=True,
|
187 |
+
**kwargs
|
188 |
+
)
|
189 |
+
|
190 |
+
if not tools_to_call_from:
|
191 |
+
completion_kwargs.pop("tools", None)
|
192 |
+
completion_kwargs.pop("tool_choice", None)
|
193 |
+
|
194 |
+
filtered_kwargs = {
|
195 |
+
k: v for k, v in completion_kwargs.items()
|
196 |
+
if k not in ["messages", "stop", "grammar", "max_tokens", "tools_to_call_from"]
|
197 |
+
}
|
198 |
+
max_tokens = (
|
199 |
+
kwargs.get("max_tokens")
|
200 |
+
or self.max_tokens
|
201 |
+
or 1024
|
202 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
provider = LlamaCppPythonProvider(self.llm)
|
205 |
+
system_message= completion_kwargs["messages"][0]["content"]
|
206 |
+
message= completion_kwargs["messages"].pop()["content"]
|
207 |
+
|
208 |
+
# Create the agent
|
209 |
+
agent = LlamaCppAgent(
|
210 |
+
provider,
|
211 |
+
system_prompt=f"{system_message}",
|
212 |
+
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
|
213 |
+
debug_output=True,
|
214 |
+
)
|
215 |
+
temperature = 0.7
|
216 |
+
top_k=40
|
217 |
+
top_p=0.95
|
218 |
+
max_tokens=1024
|
219 |
+
repeat_penalty=1.1
|
220 |
+
settings = provider.get_provider_default_settings()
|
221 |
+
settings.temperature = temperature
|
222 |
+
settings.top_k = top_k
|
223 |
+
settings.top_p = top_p
|
224 |
+
settings.max_tokens = max_tokens
|
225 |
+
settings.repeat_penalty = repeat_penalty
|
226 |
+
settings.stream = False
|
227 |
+
|
228 |
+
print(len(completion_kwargs["messages"]))
|
229 |
+
messages = BasicChatHistory()
|
230 |
+
for from_message in completion_kwargs["messages"]:
|
231 |
+
if from_message["role"] is MessageRole.USER:
|
232 |
+
history_message = {"role": MessageRole.USER, "content": from_message["content"]}
|
233 |
+
elif from_message["role"] is MessageRole.SYSTEM:
|
234 |
+
history_message = {"role": MessageRole.SYSTEM, "content": from_message["content"]}
|
235 |
+
else:
|
236 |
+
history_message = {"role": MessageRole.ASSISTANT, "content": from_message["content"]}
|
237 |
+
messages.add_message(from_message)
|
238 |
+
print("<history>")
|
239 |
+
stream = agent.get_chat_response(
|
240 |
message,
|
241 |
llm_sampling_settings=settings,
|
242 |
chat_history=messages,
|
243 |
+
returns_streaming_generator=False,
|
244 |
+
print_output=True,
|
245 |
+
|
246 |
+
)
|
247 |
+
|
248 |
+
content = stream
|
249 |
+
message = ChatMessage(role=MessageRole.ASSISTANT, content=content)
|
250 |
|
251 |
+
if tools_to_call_from is not None:
|
252 |
+
return super.parse_tool_args_if_needed(message)
|
253 |
+
return message
|
254 |
+
except Exception as e:
|
255 |
+
logging.error(f"Model error: {e}")
|
256 |
+
return ChatMessage(role="assistant", content=f"Error: {str(e)}")
|
257 |
+
|
258 |
+
|
259 |
+
model = LlamaCppModel(
|
260 |
+
model_path = "models/google_gemma-3-1b-it-Q5_K_M.gguf",
|
261 |
+
n_ctx=8192,verbose=False
|
262 |
+
)
|
263 |
+
|
264 |
+
import yaml
|
265 |
+
with open("test.yaml", "r") as f:
|
266 |
+
prompt = f.read()
|
267 |
+
|
268 |
+
description="""
|
269 |
+
*CPU Rag Example with LlamaCpp*
|
270 |
+
Take a few minute.
|
271 |
+
|
272 |
+
Reference
|
273 |
+
- [pull-450](https://github.com/huggingface/smolagents/pull/450)
|
274 |
+
- [Gemma-llamacpp](https://huggingface.co/spaces/sitammeur/Gemma-llamacpp)
|
275 |
+
|
276 |
+
"""
|
277 |
+
#Tool not support
|
278 |
+
agent = CodeAgent(prompt_templates =yaml.safe_load(prompt),model=model, tools=[retriever_tool],max_steps=2,verbosity_level=2,name="AGENT",description=description)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
demo = GradioUI(agent)
|
281 |
|
|
|
282 |
if __name__ == "__main__":
|
283 |
+
demo.launch()
|