Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,19 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
|
|
|
|
7 |
import asyncio
|
8 |
from PIL import Image
|
9 |
from gradio_client import Client, handle_file
|
10 |
-
import
|
|
|
11 |
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
13 |
|
14 |
-
# Initialize the AsyncInferenceClient globally
|
15 |
-
client = AsyncInferenceClient()
|
16 |
|
17 |
def enable_lora(lora_add, basemodel):
|
18 |
return basemodel if not lora_add else lora_add
|
@@ -23,132 +24,67 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
23 |
seed = random.randint(0, MAX_SEED)
|
24 |
seed = int(seed)
|
25 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
26 |
-
|
27 |
-
|
28 |
-
image = await client.text_to_image(
|
29 |
-
prompt=text,
|
30 |
-
height=height,
|
31 |
-
width=width,
|
32 |
-
guidance_scale=scales,
|
33 |
-
num_inference_steps=steps,
|
34 |
-
model=model
|
35 |
-
)
|
36 |
return image, seed
|
37 |
except Exception as e:
|
38 |
-
print(f"Error
|
39 |
return None, None
|
40 |
|
41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
42 |
try:
|
43 |
client = Client("finegrain/finegrain-image-enhancer")
|
44 |
-
result = client.predict(
|
45 |
-
input_image=handle_file(img_path),
|
46 |
-
prompt=prompt,
|
47 |
-
negative_prompt="",
|
48 |
-
seed=42,
|
49 |
-
upscale_factor=upscale_factor,
|
50 |
-
controlnet_scale=0.6,
|
51 |
-
controlnet_decay=1,
|
52 |
-
condition_scale=6,
|
53 |
-
tile_width=112,
|
54 |
-
tile_height=144,
|
55 |
-
denoise_strength=0.35,
|
56 |
-
num_inference_steps=18,
|
57 |
-
solver="DDIM",
|
58 |
-
api_name="/process"
|
59 |
-
)
|
60 |
return result[1]
|
61 |
except Exception as e:
|
62 |
-
print(f"Error
|
63 |
return None
|
64 |
|
65 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
66 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# Process upscale if required
|
82 |
-
if process_upscale:
|
83 |
-
upscale_result_path = get_upscale_finegrain(prompt, temp_image_path, upscale_factor)
|
84 |
-
if upscale_result_path is not None:
|
85 |
-
upscale_image = Image.open(upscale_result_path)
|
86 |
-
upscale_image.save(upscale_image_path, format="JPEG")
|
87 |
-
return [temp_image_path, upscale_image_path]
|
88 |
-
else:
|
89 |
-
return ["Upscale failed", temp_image_path]
|
90 |
else:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
return [
|
95 |
-
finally:
|
96 |
-
# Cleanup temporary files
|
97 |
-
try:
|
98 |
-
if os.path.exists(temp_image_path):
|
99 |
-
os.remove(temp_image_path)
|
100 |
-
if os.path.exists(upscale_image_path):
|
101 |
-
os.remove(upscale_image_path)
|
102 |
-
except Exception as cleanup_error:
|
103 |
-
print(f"Error during cleanup: {cleanup_error}")
|
104 |
|
105 |
css = """
|
106 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
107 |
"""
|
108 |
|
109 |
-
with gr.Blocks(css=css
|
110 |
with gr.Column(elem_id="col-container"):
|
111 |
with gr.Row():
|
112 |
with gr.Column(scale=3):
|
113 |
-
output_res =
|
114 |
with gr.Column(scale=2):
|
115 |
prompt = gr.Textbox(label="Image Description")
|
116 |
-
basemodel_choice = gr.Dropdown(
|
117 |
-
|
118 |
-
choices=[
|
119 |
-
"black-forest-labs/FLUX.1-schnell",
|
120 |
-
"black-forest-labs/FLUX.1-DEV",
|
121 |
-
"enhanceaiteam/Flux-uncensored",
|
122 |
-
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
123 |
-
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
124 |
-
"city96/FLUX.1-dev-gguf"
|
125 |
-
],
|
126 |
-
value="black-forest-labs/FLUX.1-schnell"
|
127 |
-
)
|
128 |
-
lora_model_choice = gr.Dropdown(
|
129 |
-
label="LoRA",
|
130 |
-
choices=[
|
131 |
-
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
132 |
-
"XLabs-AI/flux-RealismLora",
|
133 |
-
"enhanceaiteam/Flux-uncensored"
|
134 |
-
],
|
135 |
-
value="XLabs-AI/flux-RealismLora"
|
136 |
-
)
|
137 |
process_lora = gr.Checkbox(label="LoRA Process")
|
138 |
process_upscale = gr.Checkbox(label="Scale Process")
|
139 |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
|
140 |
-
|
141 |
with gr.Accordion(label="Advanced Options", open=False):
|
142 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
|
143 |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
|
144 |
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
|
145 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
|
146 |
seed = gr.Number(label="Seed", value=-1)
|
147 |
-
|
148 |
btn = gr.Button("Generate")
|
149 |
-
btn.click(
|
150 |
-
|
151 |
-
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
|
152 |
-
outputs=output_res,
|
153 |
-
)
|
154 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
5 |
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
7 |
+
import requests
|
8 |
+
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
11 |
from gradio_client import Client, handle_file
|
12 |
+
from huggingface_hub import login
|
13 |
+
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
|
|
|
|
17 |
|
18 |
def enable_lora(lora_add, basemodel):
|
19 |
return basemodel if not lora_add else lora_add
|
|
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
seed = int(seed)
|
26 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
27 |
+
client = AsyncInferenceClient()
|
28 |
+
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return image, seed
|
30 |
except Exception as e:
|
31 |
+
print(f"Error generando imagen: {e}")
|
32 |
return None, None
|
33 |
|
34 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
35 |
try:
|
36 |
client = Client("finegrain/finegrain-image-enhancer")
|
37 |
+
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return result[1]
|
39 |
except Exception as e:
|
40 |
+
print(f"Error escalando imagen: {e}")
|
41 |
return None
|
42 |
|
43 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
44 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
45 |
+
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
46 |
+
if image is None:
|
47 |
+
return [None, None]
|
48 |
+
|
49 |
+
image_path = "temp_image.jpg"
|
50 |
+
image.save(image_path, format="JPEG")
|
51 |
+
|
52 |
+
if process_upscale:
|
53 |
+
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
54 |
+
if upscale_image_path is not None:
|
55 |
+
upscale_image = Image.open(upscale_image_path)
|
56 |
+
upscale_image.save("upscale_image.jpg", format="JPEG")
|
57 |
+
return [image_path, "upscale_image.jpg"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
else:
|
59 |
+
print("Error: The scaled image path is None")
|
60 |
+
return [image_path, image_path]
|
61 |
+
else:
|
62 |
+
return [image_path, image_path]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
css = """
|
65 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
66 |
"""
|
67 |
|
68 |
+
with gr.Blocks(css=css) as demo:
|
69 |
with gr.Column(elem_id="col-container"):
|
70 |
with gr.Row():
|
71 |
with gr.Column(scale=3):
|
72 |
+
output_res = ImageSlider(label="Flux / Upscaled")
|
73 |
with gr.Column(scale=2):
|
74 |
prompt = gr.Textbox(label="Image Description")
|
75 |
+
basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
|
76 |
+
lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
process_lora = gr.Checkbox(label="LoRA Process")
|
78 |
process_upscale = gr.Checkbox(label="Scale Process")
|
79 |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
|
80 |
+
|
81 |
with gr.Accordion(label="Advanced Options", open=False):
|
82 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
|
83 |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
|
84 |
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
|
85 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
|
86 |
seed = gr.Number(label="Seed", value=-1)
|
87 |
+
|
88 |
btn = gr.Button("Generate")
|
89 |
+
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
|
90 |
+
demo.launch()
|
|
|
|
|
|
|
|