Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,15 @@ import numpy as np
|
|
4 |
import random
|
5 |
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
7 |
-
import requests
|
8 |
-
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
11 |
from gradio_client import Client, handle_file
|
12 |
-
|
13 |
-
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
|
|
|
|
17 |
|
18 |
def enable_lora(lora_add, basemodel):
|
19 |
return basemodel if not lora_add else lora_add
|
@@ -24,42 +23,84 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
seed = int(seed)
|
26 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return image, seed
|
30 |
except Exception as e:
|
31 |
-
print(f"Error
|
32 |
return None, None
|
33 |
|
34 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
35 |
try:
|
36 |
client = Client("finegrain/finegrain-image-enhancer")
|
37 |
-
result = client.predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return result[1]
|
39 |
except Exception as e:
|
40 |
-
print(f"Error
|
41 |
return None
|
42 |
|
43 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
44 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
else:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
css = """
|
65 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
@@ -69,22 +110,45 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
69 |
with gr.Column(elem_id="col-container"):
|
70 |
with gr.Row():
|
71 |
with gr.Column(scale=3):
|
72 |
-
output_res =
|
73 |
with gr.Column(scale=2):
|
74 |
prompt = gr.Textbox(label="Image Description")
|
75 |
-
basemodel_choice = gr.Dropdown(
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
process_lora = gr.Checkbox(label="LoRA Process")
|
78 |
process_upscale = gr.Checkbox(label="Scale Process")
|
79 |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
|
80 |
-
|
81 |
with gr.Accordion(label="Advanced Options", open=False):
|
82 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
|
83 |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
|
84 |
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
|
85 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
|
86 |
seed = gr.Number(label="Seed", value=-1)
|
87 |
-
|
88 |
btn = gr.Button("Generate")
|
89 |
-
btn.click(
|
90 |
-
|
|
|
|
|
|
|
|
|
|
4 |
import random
|
5 |
from huggingface_hub import AsyncInferenceClient
|
6 |
from translatepy import Translator
|
|
|
|
|
7 |
import asyncio
|
8 |
from PIL import Image
|
9 |
from gradio_client import Client, handle_file
|
10 |
+
import uuid
|
|
|
11 |
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
13 |
|
14 |
+
# Initialize the AsyncInferenceClient globally
|
15 |
+
client = AsyncInferenceClient()
|
16 |
|
17 |
def enable_lora(lora_add, basemodel):
|
18 |
return basemodel if not lora_add else lora_add
|
|
|
23 |
seed = random.randint(0, MAX_SEED)
|
24 |
seed = int(seed)
|
25 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
26 |
+
|
27 |
+
# Generate the image
|
28 |
+
image = await client.text_to_image(
|
29 |
+
prompt=text,
|
30 |
+
height=height,
|
31 |
+
width=width,
|
32 |
+
guidance_scale=scales,
|
33 |
+
num_inference_steps=steps,
|
34 |
+
model=model
|
35 |
+
)
|
36 |
return image, seed
|
37 |
except Exception as e:
|
38 |
+
print(f"Error generating image: {e}")
|
39 |
return None, None
|
40 |
|
41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
42 |
try:
|
43 |
client = Client("finegrain/finegrain-image-enhancer")
|
44 |
+
result = client.predict(
|
45 |
+
input_image=handle_file(img_path),
|
46 |
+
prompt=prompt,
|
47 |
+
negative_prompt="",
|
48 |
+
seed=42,
|
49 |
+
upscale_factor=upscale_factor,
|
50 |
+
controlnet_scale=0.6,
|
51 |
+
controlnet_decay=1,
|
52 |
+
condition_scale=6,
|
53 |
+
tile_width=112,
|
54 |
+
tile_height=144,
|
55 |
+
denoise_strength=0.35,
|
56 |
+
num_inference_steps=18,
|
57 |
+
solver="DDIM",
|
58 |
+
api_name="/process"
|
59 |
+
)
|
60 |
return result[1]
|
61 |
except Exception as e:
|
62 |
+
print(f"Error upscaling image: {e}")
|
63 |
return None
|
64 |
|
65 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
66 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
67 |
+
|
68 |
+
# Generate a unique file name for temporary files
|
69 |
+
temp_image_path = f"temp_image_{uuid.uuid4().hex}.jpg"
|
70 |
+
upscale_image_path = f"upscale_image_{uuid.uuid4().hex}.jpg"
|
71 |
+
|
72 |
+
try:
|
73 |
+
# Generate the image
|
74 |
+
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
75 |
+
if image is None:
|
76 |
+
return ["Generation failed", None]
|
77 |
+
|
78 |
+
# Save the image locally
|
79 |
+
image.save(temp_image_path, format="JPEG")
|
80 |
+
|
81 |
+
# Process upscale if required
|
82 |
+
if process_upscale:
|
83 |
+
upscale_result_path = get_upscale_finegrain(prompt, temp_image_path, upscale_factor)
|
84 |
+
if upscale_result_path is not None:
|
85 |
+
upscale_image = Image.open(upscale_result_path)
|
86 |
+
upscale_image.save(upscale_image_path, format="JPEG")
|
87 |
+
return [temp_image_path, upscale_image_path]
|
88 |
+
else:
|
89 |
+
return ["Upscale failed", temp_image_path]
|
90 |
else:
|
91 |
+
return [temp_image_path, temp_image_path]
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Error in generation pipeline: {e}")
|
94 |
+
return ["Error", None]
|
95 |
+
finally:
|
96 |
+
# Cleanup temporary files
|
97 |
+
try:
|
98 |
+
if os.path.exists(temp_image_path):
|
99 |
+
os.remove(temp_image_path)
|
100 |
+
if os.path.exists(upscale_image_path):
|
101 |
+
os.remove(upscale_image_path)
|
102 |
+
except Exception as cleanup_error:
|
103 |
+
print(f"Error during cleanup: {cleanup_error}")
|
104 |
|
105 |
css = """
|
106 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
|
|
110 |
with gr.Column(elem_id="col-container"):
|
111 |
with gr.Row():
|
112 |
with gr.Column(scale=3):
|
113 |
+
output_res = gr.Image(label="Generated Image / Upscaled Image")
|
114 |
with gr.Column(scale=2):
|
115 |
prompt = gr.Textbox(label="Image Description")
|
116 |
+
basemodel_choice = gr.Dropdown(
|
117 |
+
label="Model",
|
118 |
+
choices=[
|
119 |
+
"black-forest-labs/FLUX.1-schnell",
|
120 |
+
"black-forest-labs/FLUX.1-DEV",
|
121 |
+
"enhanceaiteam/Flux-uncensored",
|
122 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
123 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
124 |
+
"city96/FLUX.1-dev-gguf"
|
125 |
+
],
|
126 |
+
value="black-forest-labs/FLUX.1-schnell"
|
127 |
+
)
|
128 |
+
lora_model_choice = gr.Dropdown(
|
129 |
+
label="LoRA",
|
130 |
+
choices=[
|
131 |
+
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
132 |
+
"XLabs-AI/flux-RealismLora",
|
133 |
+
"enhanceaiteam/Flux-uncensored"
|
134 |
+
],
|
135 |
+
value="XLabs-AI/flux-RealismLora"
|
136 |
+
)
|
137 |
process_lora = gr.Checkbox(label="LoRA Process")
|
138 |
process_upscale = gr.Checkbox(label="Scale Process")
|
139 |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
|
140 |
+
|
141 |
with gr.Accordion(label="Advanced Options", open=False):
|
142 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
|
143 |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
|
144 |
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
|
145 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
|
146 |
seed = gr.Number(label="Seed", value=-1)
|
147 |
+
|
148 |
btn = gr.Button("Generate")
|
149 |
+
btn.click(
|
150 |
+
fn=gen,
|
151 |
+
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
|
152 |
+
outputs=output_res,
|
153 |
+
)
|
154 |
+
demo.launch()
|