Akbartus commited on
Commit
a4dda29
·
verified ·
1 Parent(s): a8e98d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -33
app.py CHANGED
@@ -4,16 +4,15 @@ import numpy as np
4
  import random
5
  from huggingface_hub import AsyncInferenceClient
6
  from translatepy import Translator
7
- import requests
8
- import re
9
  import asyncio
10
  from PIL import Image
11
  from gradio_client import Client, handle_file
12
- from huggingface_hub import login
13
- from gradio_imageslider import ImageSlider
14
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
 
 
 
17
 
18
  def enable_lora(lora_add, basemodel):
19
  return basemodel if not lora_add else lora_add
@@ -24,42 +23,84 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
24
  seed = random.randint(0, MAX_SEED)
25
  seed = int(seed)
26
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
27
- client = AsyncInferenceClient()
28
- image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
 
 
 
 
 
 
 
 
29
  return image, seed
30
  except Exception as e:
31
- print(f"Error generando imagen: {e}")
32
  return None, None
33
 
34
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
35
  try:
36
  client = Client("finegrain/finegrain-image-enhancer")
37
- result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  return result[1]
39
  except Exception as e:
40
- print(f"Error escalando imagen: {e}")
41
  return None
42
 
43
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
44
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
45
- image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
46
- if image is None:
47
- return [None, None]
48
-
49
- image_path = "temp_image.jpg"
50
- image.save(image_path, format="JPEG")
51
-
52
- if process_upscale:
53
- upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
54
- if upscale_image_path is not None:
55
- upscale_image = Image.open(upscale_image_path)
56
- upscale_image.save("upscale_image.jpg", format="JPEG")
57
- return [image_path, "upscale_image.jpg"]
 
 
 
 
 
 
 
 
 
 
58
  else:
59
- print("Error: The scaled image path is None")
60
- return [image_path, image_path]
61
- else:
62
- return [image_path, image_path]
 
 
 
 
 
 
 
 
 
63
 
64
  css = """
65
  #col-container{ margin: 0 auto; max-width: 1024px;}
@@ -69,22 +110,45 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
69
  with gr.Column(elem_id="col-container"):
70
  with gr.Row():
71
  with gr.Column(scale=3):
72
- output_res = ImageSlider(label="Flux / Upscaled")
73
  with gr.Column(scale=2):
74
  prompt = gr.Textbox(label="Image Description")
75
- basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
76
- lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  process_lora = gr.Checkbox(label="LoRA Process")
78
  process_upscale = gr.Checkbox(label="Scale Process")
79
  upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
80
-
81
  with gr.Accordion(label="Advanced Options", open=False):
82
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
83
  height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
84
  scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
85
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
86
  seed = gr.Number(label="Seed", value=-1)
87
-
88
  btn = gr.Button("Generate")
89
- btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
90
- demo.launch()
 
 
 
 
 
4
  import random
5
  from huggingface_hub import AsyncInferenceClient
6
  from translatepy import Translator
 
 
7
  import asyncio
8
  from PIL import Image
9
  from gradio_client import Client, handle_file
10
+ import uuid
 
11
 
12
  MAX_SEED = np.iinfo(np.int32).max
13
 
14
+ # Initialize the AsyncInferenceClient globally
15
+ client = AsyncInferenceClient()
16
 
17
  def enable_lora(lora_add, basemodel):
18
  return basemodel if not lora_add else lora_add
 
23
  seed = random.randint(0, MAX_SEED)
24
  seed = int(seed)
25
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
26
+
27
+ # Generate the image
28
+ image = await client.text_to_image(
29
+ prompt=text,
30
+ height=height,
31
+ width=width,
32
+ guidance_scale=scales,
33
+ num_inference_steps=steps,
34
+ model=model
35
+ )
36
  return image, seed
37
  except Exception as e:
38
+ print(f"Error generating image: {e}")
39
  return None, None
40
 
41
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
42
  try:
43
  client = Client("finegrain/finegrain-image-enhancer")
44
+ result = client.predict(
45
+ input_image=handle_file(img_path),
46
+ prompt=prompt,
47
+ negative_prompt="",
48
+ seed=42,
49
+ upscale_factor=upscale_factor,
50
+ controlnet_scale=0.6,
51
+ controlnet_decay=1,
52
+ condition_scale=6,
53
+ tile_width=112,
54
+ tile_height=144,
55
+ denoise_strength=0.35,
56
+ num_inference_steps=18,
57
+ solver="DDIM",
58
+ api_name="/process"
59
+ )
60
  return result[1]
61
  except Exception as e:
62
+ print(f"Error upscaling image: {e}")
63
  return None
64
 
65
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
66
  model = enable_lora(lora_model, basemodel) if process_lora else basemodel
67
+
68
+ # Generate a unique file name for temporary files
69
+ temp_image_path = f"temp_image_{uuid.uuid4().hex}.jpg"
70
+ upscale_image_path = f"upscale_image_{uuid.uuid4().hex}.jpg"
71
+
72
+ try:
73
+ # Generate the image
74
+ image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
75
+ if image is None:
76
+ return ["Generation failed", None]
77
+
78
+ # Save the image locally
79
+ image.save(temp_image_path, format="JPEG")
80
+
81
+ # Process upscale if required
82
+ if process_upscale:
83
+ upscale_result_path = get_upscale_finegrain(prompt, temp_image_path, upscale_factor)
84
+ if upscale_result_path is not None:
85
+ upscale_image = Image.open(upscale_result_path)
86
+ upscale_image.save(upscale_image_path, format="JPEG")
87
+ return [temp_image_path, upscale_image_path]
88
+ else:
89
+ return ["Upscale failed", temp_image_path]
90
  else:
91
+ return [temp_image_path, temp_image_path]
92
+ except Exception as e:
93
+ print(f"Error in generation pipeline: {e}")
94
+ return ["Error", None]
95
+ finally:
96
+ # Cleanup temporary files
97
+ try:
98
+ if os.path.exists(temp_image_path):
99
+ os.remove(temp_image_path)
100
+ if os.path.exists(upscale_image_path):
101
+ os.remove(upscale_image_path)
102
+ except Exception as cleanup_error:
103
+ print(f"Error during cleanup: {cleanup_error}")
104
 
105
  css = """
106
  #col-container{ margin: 0 auto; max-width: 1024px;}
 
110
  with gr.Column(elem_id="col-container"):
111
  with gr.Row():
112
  with gr.Column(scale=3):
113
+ output_res = gr.Image(label="Generated Image / Upscaled Image")
114
  with gr.Column(scale=2):
115
  prompt = gr.Textbox(label="Image Description")
116
+ basemodel_choice = gr.Dropdown(
117
+ label="Model",
118
+ choices=[
119
+ "black-forest-labs/FLUX.1-schnell",
120
+ "black-forest-labs/FLUX.1-DEV",
121
+ "enhanceaiteam/Flux-uncensored",
122
+ "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
123
+ "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
124
+ "city96/FLUX.1-dev-gguf"
125
+ ],
126
+ value="black-forest-labs/FLUX.1-schnell"
127
+ )
128
+ lora_model_choice = gr.Dropdown(
129
+ label="LoRA",
130
+ choices=[
131
+ "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
132
+ "XLabs-AI/flux-RealismLora",
133
+ "enhanceaiteam/Flux-uncensored"
134
+ ],
135
+ value="XLabs-AI/flux-RealismLora"
136
+ )
137
  process_lora = gr.Checkbox(label="LoRA Process")
138
  process_upscale = gr.Checkbox(label="Scale Process")
139
  upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
140
+
141
  with gr.Accordion(label="Advanced Options", open=False):
142
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
143
  height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
144
  scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
145
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
146
  seed = gr.Number(label="Seed", value=-1)
147
+
148
  btn = gr.Button("Generate")
149
+ btn.click(
150
+ fn=gen,
151
+ inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
152
+ outputs=output_res,
153
+ )
154
+ demo.launch()