File size: 6,047 Bytes
beffd29
 
 
 
 
 
 
 
 
a4dda29
beffd29
 
3bfbf6c
a4dda29
 
beffd29
 
 
 
 
 
 
 
 
 
a4dda29
 
 
 
 
 
 
 
 
 
beffd29
 
a4dda29
beffd29
 
 
 
65f255a
a4dda29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
 
a4dda29
beffd29
 
 
 
a4dda29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
a4dda29
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
 
 
 
 
 
 
 
 
a4dda29
beffd29
 
a4dda29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
 
 
a4dda29
beffd29
 
 
 
 
 
a4dda29
beffd29
a4dda29
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
import uuid

MAX_SEED = np.iinfo(np.int32).max

# Initialize the AsyncInferenceClient globally
client = AsyncInferenceClient()

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        
        # Generate the image
        image = await client.text_to_image(
            prompt=text, 
            height=height, 
            width=width, 
            guidance_scale=scales, 
            num_inference_steps=steps, 
            model=model
        )
        return image, seed
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer") 
        result = client.predict(
            input_image=handle_file(img_path), 
            prompt=prompt, 
            negative_prompt="", 
            seed=42, 
            upscale_factor=upscale_factor, 
            controlnet_scale=0.6, 
            controlnet_decay=1, 
            condition_scale=6, 
            tile_width=112, 
            tile_height=144, 
            denoise_strength=0.35, 
            num_inference_steps=18, 
            solver="DDIM", 
            api_name="/process"
        )
        return result[1]
    except Exception as e:
        print(f"Error upscaling image: {e}")
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel

    # Generate a unique file name for temporary files
    temp_image_path = f"temp_image_{uuid.uuid4().hex}.jpg"
    upscale_image_path = f"upscale_image_{uuid.uuid4().hex}.jpg"

    try:
        # Generate the image
        image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
        if image is None:
            return ["Generation failed", None]

        # Save the image locally
        image.save(temp_image_path, format="JPEG")

        # Process upscale if required
        if process_upscale:
            upscale_result_path = get_upscale_finegrain(prompt, temp_image_path, upscale_factor)
            if upscale_result_path is not None:
                upscale_image = Image.open(upscale_result_path)
                upscale_image.save(upscale_image_path, format="JPEG")
                return [temp_image_path, upscale_image_path]
            else:
                return ["Upscale failed", temp_image_path]
        else:
            return [temp_image_path, temp_image_path]
    except Exception as e:
        print(f"Error in generation pipeline: {e}")
        return ["Error", None]
    finally:
        # Cleanup temporary files
        try:
            if os.path.exists(temp_image_path):
                os.remove(temp_image_path)
            if os.path.exists(upscale_image_path):
                os.remove(upscale_image_path)
        except Exception as cleanup_error:
            print(f"Error during cleanup: {cleanup_error}")

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = gr.Image(label="Generated Image / Upscaled Image")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Image Description")
                basemodel_choice = gr.Dropdown(
                    label="Model", 
                    choices=[
                        "black-forest-labs/FLUX.1-schnell", 
                        "black-forest-labs/FLUX.1-DEV", 
                        "enhanceaiteam/Flux-uncensored", 
                        "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", 
                        "Shakker-Labs/FLUX.1-dev-LoRA-add-details", 
                        "city96/FLUX.1-dev-gguf"
                    ], 
                    value="black-forest-labs/FLUX.1-schnell"
                )
                lora_model_choice = gr.Dropdown(
                    label="LoRA", 
                    choices=[
                        "Shakker-Labs/FLUX.1-dev-LoRA-add-details", 
                        "XLabs-AI/flux-RealismLora", 
                        "enhanceaiteam/Flux-uncensored"
                    ], 
                    value="XLabs-AI/flux-RealismLora"
                )
                process_lora = gr.Checkbox(label="LoRA Process")
                process_upscale = gr.Checkbox(label="Scale Process")
                upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)

                with gr.Accordion(label="Advanced Options", open=False):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
                    seed = gr.Number(label="Seed", value=-1)

                btn = gr.Button("Generate")
                btn.click(
                    fn=gen, 
                    inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], 
                    outputs=output_res,
                )
    demo.launch()