Spaces:
Running
Running
File size: 4,485 Bytes
96b8d46 beffd29 0bee60e beffd29 0bee60e beffd29 3bfbf6c 4cf8def beffd29 0bee60e 4cf8def beffd29 4cf8def beffd29 65f255a 4cf8def beffd29 4cf8def beffd29 0bee60e 37f8e9c 0bee60e 37f8e9c beffd29 0bee60e 37f8e9c 0bee60e 37f8e9c beffd29 37f8e9c 0bee60e beffd29 0bee60e beffd29 ddcb592 beffd29 0bee60e beffd29 ddcb592 beffd29 0bee60e beffd29 37f8e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
MAX_SEED = np.iinfo(np.int32).max
def enable_lora(lora_add, basemodel):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
print(f"Error generando imagen: {e}")
return None, None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
except Exception as e:
print(f"Error escalando imagen: {e}")
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
return [None, None, None]
image_path = "temp_image.jpg"
image.save(image_path, format="JPEG")
if process_upscale:
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None:
upscale_image = Image.open(upscale_image_path)
upscale_image.save("upscale_image.jpg", format="JPEG")
return [image_path, "upscale_image.jpg", seed]
else:
print("Error: The scaled image path is None")
return [image_path, image_path, seed]
else:
return [image_path, image_path, seed]
# Update the interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=3):
output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=2):
prompt = gr.Textbox(label="Image Description")
basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "Shakker-Labs/FLUX.1-dev-LoRA-add-details"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LoRA", choices=["XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
process_lora = gr.Checkbox(label="LoRA Process")
process_upscale = gr.Checkbox(label="Scale Process")
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
with gr.Accordion(label="Advanced Options", open=False):
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1280)
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=4)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=4)
seed = gr.Number(label="Seed", value=-1)
btn = gr.Button("Generate")
seed_output = gr.Textbox(label="Seed Value") # Added Textbox for Seed Output
btn.click(
fn=gen,
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
outputs=[output_res, seed_output], # Updated outputs to include seed
)
demo.launch()
|