File size: 5,480 Bytes
96b8d46
beffd29
 
 
 
 
0bee60e
 
beffd29
 
 
0bee60e
 
beffd29
 
3bfbf6c
beffd29
 
 
 
 
 
 
 
 
0bee60e
34341e4
 
 
 
 
 
 
 
beffd29
 
34341e4
beffd29
 
 
 
65f255a
34341e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
 
34341e4
beffd29
 
 
 
0bee60e
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
0bee60e
 
 
 
beffd29
34341e4
 
 
 
beffd29
 
 
 
0bee60e
beffd29
 
 
0bee60e
beffd29
 
34341e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beffd29
 
 
0bee60e
beffd29
 
 
 
 
 
0bee60e
beffd29
34341e4
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        client = AsyncInferenceClient()
        image = await client.text_to_image(
            prompt=text,
            height=height,
            width=width,
            guidance_scale=scales,
            num_inference_steps=steps,
            model=model
        )
        return image, seed
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer") 
        result = client.predict(
            input_image=handle_file(img_path),
            prompt=prompt,
            negative_prompt="",
            seed=42,
            upscale_factor=upscale_factor,
            controlnet_scale=0.6,
            controlnet_decay=1,
            condition_scale=6,
            tile_width=112,
            tile_height=144,
            denoise_strength=0.35,
            num_inference_steps=18,
            solver="DDIM",
            api_name="/process"
        )
        return result[1]
    except Exception as e:
        print(f"Error scaling image: {e}")
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    if image is None:
        return [None, None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image_path is not None:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save("upscale_image.jpg", format="JPEG")
            return [image_path, "upscale_image.jpg"]
        else:
            print("Error: The scaled image path is None")
            return [image_path, image_path]
    else:
        return [image_path, image_path]

# Helper to run async functions synchronously
def run_async(fn, *args, **kwargs):
    return asyncio.run(fn(*args, **kwargs))

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Image Description")
                basemodel_choice = gr.Dropdown(
                    label="Model",
                    choices=[
                        "black-forest-labs/FLUX.1-schnell",
                        "black-forest-labs/FLUX.1-DEV",
                        "enhanceaiteam/Flux-uncensored",
                        "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
                        "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
                        "city96/FLUX.1-dev-gguf"
                    ],
                    value="black-forest-labs/FLUX.1-schnell"
                )
                lora_model_choice = gr.Dropdown(
                    label="LoRA",
                    choices=[
                        "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
                        "XLabs-AI/flux-RealismLora",
                        "enhanceaiteam/Flux-uncensored"
                    ],
                    value="XLabs-AI/flux-RealismLora"
                )
                process_lora = gr.Checkbox(label="LoRA Process")
                process_upscale = gr.Checkbox(label="Scale Process")
                upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
                
                with gr.Accordion(label="Advanced Options", open=False):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=8)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=8)
                    seed = gr.Number(label="Seed", value=-1)
    
                btn = gr.Button("Generate")
                btn.click(
                    fn=lambda *inputs: run_async(gen, *inputs),
                    inputs=[
                        prompt, basemodel_choice, width, height, scales, steps, seed,
                        upscale_factor, process_upscale, lora_model_choice, process_lora
                    ],
                    outputs=output_res
                )
    demo.launch()