Ais
commited on
Update app/main.py
Browse files- app/main.py +37 -57
app/main.py
CHANGED
@@ -1,75 +1,55 @@
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gdown
|
3 |
-
import re
|
4 |
-
import torch
|
5 |
-
from fastapi import FastAPI, Request
|
6 |
-
from pydantic import BaseModel
|
7 |
-
from peft import PeftModel, PeftConfig
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
class PromptRequest(BaseModel):
|
17 |
-
prompt: str
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
gdown.
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
print(f"✅ Latest adapter found: {latest}")
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
dest_file = os.path.join(LOCAL_ADAPTER_DIR, file)
|
38 |
-
os.system(f"cp '{src_file}' '{dest_file}'")
|
39 |
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map="auto", torch_dtype=torch.float16)
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
46 |
-
|
47 |
-
print("🔗 Loading adapter...")
|
48 |
-
model = PeftModel.from_pretrained(model, LOCAL_ADAPTER_DIR)
|
49 |
-
model.eval()
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
# Step 1: Download latest adapter
|
54 |
-
download_latest_adapter()
|
55 |
-
|
56 |
-
# Step 2: Load model and tokenizer
|
57 |
-
model, tokenizer = load_model()
|
58 |
-
|
59 |
-
@app.post("/generate")
|
60 |
-
async def generate_text(request: PromptRequest):
|
61 |
-
prompt = request.prompt.strip()
|
62 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
63 |
|
|
|
64 |
with torch.no_grad():
|
65 |
outputs = model.generate(
|
66 |
-
|
67 |
-
max_new_tokens=
|
68 |
-
do_sample=True,
|
69 |
temperature=0.7,
|
70 |
-
|
71 |
-
|
72 |
)
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
import os
|
6 |
import gdown
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Auto-download adapter from Google Drive (if not already present)
|
11 |
+
ADAPTER_DIR = "adapter"
|
12 |
+
ADAPTER_PATH = os.path.join(ADAPTER_DIR, "adapter_model.safetensors")
|
13 |
+
DRIVE_FILE_ID = "1wnuE5t_m4ojI7YqxXZ8lBdtDFoHJJ6_H" # version 1 model
|
|
|
|
|
14 |
|
15 |
+
if not os.path.exists(ADAPTER_PATH):
|
16 |
+
os.makedirs(ADAPTER_DIR, exist_ok=True)
|
17 |
+
gdown.download(f"https://drive.google.com/uc?id={DRIVE_FILE_ID}", ADAPTER_PATH, quiet=False)
|
18 |
|
19 |
+
# Load base model
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
"Qwen/Qwen2-0.5B-Instruct",
|
22 |
+
device_map="auto",
|
23 |
+
torch_dtype=torch.float16
|
24 |
+
)
|
25 |
|
26 |
+
# Load tokenizer
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
|
|
28 |
|
29 |
+
# Load LoRA adapter
|
30 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_DIR)
|
31 |
+
model.eval()
|
|
|
|
|
32 |
|
33 |
+
@app.post("/chat")
|
34 |
+
async def chat(request: Request):
|
35 |
+
data = await request.json()
|
36 |
+
prompt = data.get("prompt")
|
37 |
|
38 |
+
if not prompt:
|
39 |
+
return {"error": "No prompt provided."}
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
full_prompt = f"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
44 |
with torch.no_grad():
|
45 |
outputs = model.generate(
|
46 |
+
**inputs,
|
47 |
+
max_new_tokens=256,
|
|
|
48 |
temperature=0.7,
|
49 |
+
do_sample=True,
|
50 |
+
top_p=0.9
|
51 |
)
|
52 |
|
53 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
+
response = response.split("<|im_start|>assistant\n")[-1].strip()
|
55 |
+
return {"response": response}
|