Ais
commited on
Update app/main.py
Browse files- app/main.py +71 -53
app/main.py
CHANGED
@@ -1,57 +1,75 @@
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
3 |
-
from peft import PeftModel
|
4 |
-
import json
|
5 |
-
import os
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
adapter_config.pop(key, None)
|
24 |
-
with open(adapter_config_path, "w") as f:
|
25 |
-
json.dump(adapter_config, f)
|
26 |
-
|
27 |
-
# Load adapter
|
28 |
-
model = PeftModel.from_pretrained(model, "./adapter", is_trainable=False)
|
29 |
-
model.eval()
|
30 |
-
|
31 |
-
# Simple chat function
|
32 |
-
def chat(prompt):
|
33 |
-
messages = [
|
34 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
35 |
-
{"role": "user", "content": prompt}
|
36 |
-
]
|
37 |
-
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
38 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
39 |
-
|
40 |
-
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
41 |
-
generated_ids = model.generate(
|
42 |
-
**model_inputs,
|
43 |
-
max_new_tokens=512,
|
44 |
-
do_sample=True,
|
45 |
-
temperature=0.7,
|
46 |
-
streamer=streamer
|
47 |
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gdown
|
3 |
+
import re
|
4 |
import torch
|
5 |
+
from fastapi import FastAPI, Request
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from peft import PeftModel, PeftConfig
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
|
|
|
|
|
|
9 |
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
DRIVE_FOLDER_URL = "https://drive.google.com/drive/folders/1S9xT92Zm9rZ4RSCxAe_DLld8vu78mqW4"
|
13 |
+
LOCAL_ADAPTER_DIR = "adapter"
|
14 |
+
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
|
15 |
+
|
16 |
+
class PromptRequest(BaseModel):
|
17 |
+
prompt: str
|
18 |
+
|
19 |
+
def download_latest_adapter():
|
20 |
+
print("🔽 Downloading adapter folder from Google Drive...")
|
21 |
+
gdown.download_folder(url=DRIVE_FOLDER_URL, output="gdrive_tmp", quiet=False, use_cookies=False)
|
22 |
+
|
23 |
+
all_versions = sorted(
|
24 |
+
[d for d in os.listdir("gdrive_tmp") if re.match(r"version \d+", d)],
|
25 |
+
key=lambda x: int(x.split()[-1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
+
if not all_versions:
|
28 |
+
raise ValueError("❌ No version folders found in Google Drive folder.")
|
29 |
+
|
30 |
+
latest = all_versions[-1]
|
31 |
+
src = os.path.join("gdrive_tmp", latest)
|
32 |
+
print(f"✅ Latest adapter found: {latest}")
|
33 |
+
|
34 |
+
os.makedirs(LOCAL_ADAPTER_DIR, exist_ok=True)
|
35 |
+
for file in os.listdir(src):
|
36 |
+
src_file = os.path.join(src, file)
|
37 |
+
dest_file = os.path.join(LOCAL_ADAPTER_DIR, file)
|
38 |
+
os.system(f"cp '{src_file}' '{dest_file}'")
|
39 |
+
|
40 |
+
print(f"✅ Adapter copied to: {LOCAL_ADAPTER_DIR}")
|
41 |
+
|
42 |
+
def load_model():
|
43 |
+
print("🚀 Loading base model...")
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map="auto", torch_dtype=torch.float16)
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
46 |
+
|
47 |
+
print("🔗 Loading adapter...")
|
48 |
+
model = PeftModel.from_pretrained(model, LOCAL_ADAPTER_DIR)
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
return model, tokenizer
|
52 |
+
|
53 |
+
# Step 1: Download latest adapter
|
54 |
+
download_latest_adapter()
|
55 |
+
|
56 |
+
# Step 2: Load model and tokenizer
|
57 |
+
model, tokenizer = load_model()
|
58 |
+
|
59 |
+
@app.post("/generate")
|
60 |
+
async def generate_text(request: PromptRequest):
|
61 |
+
prompt = request.prompt.strip()
|
62 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = model.generate(
|
66 |
+
input_ids,
|
67 |
+
max_new_tokens=300,
|
68 |
+
do_sample=True,
|
69 |
+
temperature=0.7,
|
70 |
+
top_p=0.95,
|
71 |
+
eos_token_id=tokenizer.eos_token_id,
|
72 |
+
)
|
73 |
+
|
74 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
+
return {"response": result[len(prompt):].strip()}
|