|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from peft import PeftModel |
|
import torch |
|
|
|
ADAPTER_PATH = "adapter" |
|
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
) |
|
model = PeftModel.from_pretrained(model, ADAPTER_PATH) |
|
model.eval() |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
def generate_response(prompt: str, conversation_history: list = None) -> str: |
|
""" |
|
Generate response with optional conversation history |
|
|
|
Args: |
|
prompt: Current user message |
|
conversation_history: List of {"role": "user/assistant", "content": "..."} |
|
""" |
|
|
|
|
|
formatted = "<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n" |
|
|
|
|
|
if conversation_history: |
|
for msg in conversation_history: |
|
role = msg.get("role", "") |
|
content = msg.get("content", "") |
|
|
|
if role == "user": |
|
formatted += f"<|im_start|>user\n{content}<|im_end|>\n" |
|
elif role == "assistant": |
|
formatted += f"<|im_start|>assistant\n{content}<|im_end|>\n" |
|
|
|
|
|
formatted += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
inputs = tokenizer(formatted, return_tensors="pt").to(model.device) |
|
|
|
with torch.no_grad(): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
decoded = tokenizer.decode(output[0], skip_special_tokens=True) |
|
answer = decoded.split("<|im_start|>assistant\n")[-1].strip() |
|
|
|
|
|
if "<|im_end|>" in answer: |
|
answer = answer.split("<|im_end|>")[0].strip() |
|
|
|
return answer |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
history = [ |
|
{"role": "user", "content": "What is Python?"}, |
|
{"role": "assistant", "content": "Python is a high-level programming language..."}, |
|
] |
|
|
|
|
|
response = generate_response("Can you show me a simple example?", conversation_history=history) |
|
print("Response:", response) |