from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from peft import PeftModel import torch ADAPTER_PATH = "adapter" BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct" tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16 ) model = PeftModel.from_pretrained(model, ADAPTER_PATH) model.eval() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) def generate_response(prompt: str, conversation_history: list = None) -> str: """ Generate response with optional conversation history Args: prompt: Current user message conversation_history: List of {"role": "user/assistant", "content": "..."} """ # Build conversation format formatted = "<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n" # Add conversation history if provided if conversation_history: for msg in conversation_history: role = msg.get("role", "") content = msg.get("content", "") if role == "user": formatted += f"<|im_start|>user\n{content}<|im_end|>\n" elif role == "assistant": formatted += f"<|im_start|>assistant\n{content}<|im_end|>\n" # Add current prompt formatted += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer(formatted, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( **inputs, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) decoded = tokenizer.decode(output[0], skip_special_tokens=True) answer = decoded.split("<|im_start|>assistant\n")[-1].strip() # Clean up any end tokens if "<|im_end|>" in answer: answer = answer.split("<|im_end|>")[0].strip() return answer # Example usage with conversation history if __name__ == "__main__": # Test with conversation history history = [ {"role": "user", "content": "What is Python?"}, {"role": "assistant", "content": "Python is a high-level programming language..."}, ] # This should now consider the conversation context response = generate_response("Can you show me a simple example?", conversation_history=history) print("Response:", response)