|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel |
|
import torch |
|
|
|
app = FastAPI() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2.5-0.5B-Instruct", |
|
torch_dtype=torch.float32, |
|
trust_remote_code=True |
|
) |
|
model = PeftModel.from_pretrained(model, "./adapter", is_trainable=False) |
|
model.eval() |
|
|
|
def build_prompt(messages): |
|
prompt = "" |
|
for msg in messages: |
|
role = "User" if msg["role"] == "user" else "Assistant" |
|
prompt += f"### {role}:\n{msg['content']}\n" |
|
prompt += "### Assistant:\n" |
|
return prompt |
|
|
|
class ChatRequest(BaseModel): |
|
messages: list |
|
|
|
@app.post("/chat") |
|
async def chat(req: ChatRequest): |
|
prompt = build_prompt(req.messages) |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
reply = output_text.split("### Assistant:")[-1].strip() |
|
return {"response": reply} |
|
|