File size: 1,394 Bytes
392dd49
48b2ebf
b8f5365
48b2ebf
 
 
 
 
392dd49
48b2ebf
 
 
392dd49
b8f5365
392dd49
48b2ebf
392dd49
48b2ebf
 
 
 
 
392dd49
 
48b2ebf
 
 
 
392dd49
48b2ebf
 
 
 
 
392dd49
48b2ebf
 
 
 
 
392dd49
48b2ebf
392dd49
 
b8f5365
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

app = FastAPI()

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2.5-0.5B-Instruct",
    torch_dtype=torch.float32,
    trust_remote_code=True
)
model = PeftModel.from_pretrained(model, "./adapter", is_trainable=False)
model.eval()

def build_prompt(messages):
    prompt = ""
    for msg in messages:
        role = "User" if msg["role"] == "user" else "Assistant"
        prompt += f"### {role}:\n{msg['content']}\n"
    prompt += "### Assistant:\n"
    return prompt

class ChatRequest(BaseModel):
    messages: list  # [{"role": "user", "content": "..."}]

@app.post("/chat")
async def chat(req: ChatRequest):
    prompt = build_prompt(req.messages)
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(
        **inputs,
        max_new_tokens=256,
        do_sample=True,
        temperature=0.7,
        top_p=0.95,
        eos_token_id=tokenizer.eos_token_id
    )
    output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    reply = output_text.split("### Assistant:")[-1].strip()
    return {"response": reply}