aigen / app /main.py
Ais
Update app/main.py
b397650 verified
raw
history blame
19.3 kB
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware
import re
# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B Optimized", version="2.1.0")
# === CORS ===
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"
# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)
print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()
print("✅ Qwen2-0.5B model ready with optimized settings!")
def get_simple_system_prompt(is_force_mode: bool) -> str:
"""
SIMPLIFIED system prompts optimized for Qwen2-0.5B's 500M parameters.
Shorter, clearer instructions that small models can follow better.
"""
if is_force_mode:
return """You are Apollo AI. Give direct, complete answers.
Rules:
- Provide full working code
- Be concise, max 3 sentences explanation
- Never ask questions back
- Give complete solutions immediately
Example:
User: "print hello world python"
You: "Use print('Hello World'). This outputs text to console."
"""
else:
return """You are Apollo AI tutor. Guide learning with questions.
Rules:
- Ask guiding questions instead of giving answers
- Never give complete working code
- Use hints and partial examples only
- Make students think and discover
Example:
User: "print hello world python"
You: "What function displays text in Python? Try looking up output functions."
"""
def create_simple_force_responses(user_message: str) -> str:
"""
Pre-defined responses for common questions in force mode.
This helps the 0.5B model give consistent direct answers.
"""
user_lower = user_message.lower()
# Python print
if 'print' in user_lower and ('hello' in user_lower or 'world' in user_lower):
return 'Use `print("Hello World")`. This function outputs text to the console.'
# Basic math
if '2+2' in user_lower or '2 + 2' in user_lower:
return '2 + 2 = 4. Addition combines two numbers to get their sum.'
# Python variable
if 'variable' in user_lower and ('python' in user_lower or 'create' in user_lower):
return 'Use `name = "value"`. Variables store data: `x = 5` or `text = "hello"`.'
# Python list
if 'list' in user_lower and 'python' in user_lower and 'create' in user_lower:
return 'Use square brackets: `my_list = [1, 2, 3]`. Lists store multiple items.'
# Python function
if 'function' in user_lower and 'python' in user_lower and ('create' in user_lower or 'define' in user_lower):
return '''Use def keyword:
```python
def my_function():
return "Hello"
```
Functions are reusable code blocks.'''
# Calculator
if 'calculator' in user_lower and ('create' in user_lower or 'make' in user_lower or 'build' in user_lower):
return '''Here's a simple calculator:
```python
a = float(input("First number: "))
b = float(input("Second number: "))
op = input("Operator (+,-,*,/): ")
if op == '+': print(a + b)
elif op == '-': print(a - b)
elif op == '*': print(a * b)
elif op == '/': print(a / b)
```
This performs basic math operations.'''
return None
def create_simple_mentor_responses(user_message: str) -> str:
"""
Pre-defined mentor responses for common questions.
This helps the 0.5B model give consistent guided learning.
"""
user_lower = user_message.lower()
# Python print
if 'print' in user_lower and ('hello' in user_lower or 'world' in user_lower):
return 'What function do you think displays text in Python? Think about showing output. What would it be called?'
# Basic math
if '2+2' in user_lower or '2 + 2' in user_lower:
return 'What do you think 2 + 2 equals? Try calculating it step by step.'
# Python variable
if 'variable' in user_lower and ('python' in user_lower or 'create' in user_lower):
return 'How do you think Python stores data? What symbol might assign a value to a name? Try: name = value'
# Python list
if 'list' in user_lower and 'python' in user_lower and 'create' in user_lower:
return 'What brackets do you think hold multiple items? Try making a list with [item1, item2]. What goes inside?'
# Python function
if 'function' in user_lower and 'python' in user_lower and ('create' in user_lower or 'define' in user_lower):
return '''What keyword defines a function in Python? Try this structure:
```python
___ function_name():
# your code here
```
What goes in the blank? How would you call it?'''
# Calculator
if 'calculator' in user_lower and ('create' in user_lower or 'make' in user_lower or 'build' in user_lower):
return '''What steps would a calculator need?
1. Get two numbers from user - what function gets input?
2. Get operation (+,-,*,/) - how to choose?
3. Calculate result - what structure handles choices?
4. Show result - what displays output?
Try building step 1 first. What function gets user input?'''
return None
def extract_clean_answer(full_response: str, formatted_prompt: str, user_message: str, is_force_mode: bool) -> str:
"""
Optimized cleaning for Qwen2-0.5B responses.
Simpler extraction since 0.5B models produce cleaner output.
"""
if not full_response or len(full_response.strip()) < 5:
return "I apologize, but I couldn't generate a response. Please try again."
print(f"🔍 Raw response length: {len(full_response)}")
print(f"🔍 Mode: {'FORCE' if is_force_mode else 'MENTOR'}")
# Check for pre-defined responses first
if is_force_mode:
predefined = create_simple_force_responses(user_message)
if predefined:
print("✅ Using predefined force response")
return predefined
else:
predefined = create_simple_mentor_responses(user_message)
if predefined:
print("✅ Using predefined mentor response")
return predefined
# Step 1: Remove the input prompt
generated_text = full_response
if formatted_prompt in full_response:
parts = full_response.split(formatted_prompt)
if len(parts) > 1:
generated_text = parts[-1]
# Step 2: Extract assistant content - simplified for 0.5B
assistant_content = generated_text
# Look for assistant markers
if "<|im_start|>assistant" in generated_text:
assistant_parts = generated_text.split("<|im_start|>assistant")
if len(assistant_parts) > 1:
assistant_content = assistant_parts[-1]
if "<|im_end|>" in assistant_content:
assistant_content = assistant_content.split("<|im_end|>")[0]
# Step 3: Basic cleaning - gentler for 0.5B
clean_text = assistant_content.strip()
# Remove template tokens
clean_text = re.sub(r'<\|im_start\|>', '', clean_text)
clean_text = re.sub(r'<\|im_end\|>', '', clean_text)
clean_text = re.sub(r'<\|endoftext\|>', '', clean_text)
# Remove role prefixes
clean_text = re.sub(r'^(system|user|assistant):\s*', '', clean_text, flags=re.MULTILINE)
clean_text = re.sub(r'\n(system|user|assistant):\s*', '\n', clean_text, flags=re.MULTILINE)
# Clean whitespace
clean_text = re.sub(r'\n{3,}', '\n\n', clean_text)
clean_text = clean_text.strip()
# Step 4: Fallback handling for 0.5B
if not clean_text or len(clean_text) < 10:
if is_force_mode:
return "Could you please be more specific about what you need?"
else:
return "What specific aspect would you like to explore? What's your approach?"
# Step 5: Length control for 0.5B
if len(clean_text) > 500: # Keep responses shorter for 0.5B
sentences = clean_text.split('. ')
if len(sentences) > 3:
clean_text = '. '.join(sentences[:3]) + '.'
print(f"🧹 Final cleaned answer length: {len(clean_text)}")
return clean_text
def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
"""
Optimized generation for Qwen2-0.5B with shorter contexts and conservative settings.
"""
try:
# Check for simple predefined responses first
if messages and len(messages) > 0:
last_user_msg = ""
for msg in reversed(messages):
if msg.get("role") == "user":
last_user_msg = msg.get("content", "")
break
if last_user_msg:
if is_force_mode:
predefined = create_simple_force_responses(last_user_msg)
if predefined:
return predefined
else:
predefined = create_simple_mentor_responses(last_user_msg)
if predefined:
return predefined
# Build simple conversation for 0.5B model
clean_messages = []
# Add simple system prompt
system_prompt = get_simple_system_prompt(is_force_mode)
clean_messages.append({
"role": "system",
"content": system_prompt
})
# Add only the last user message to keep context short for 0.5B
if messages and len(messages) > 0:
for msg in reversed(messages):
if msg.get("role") == "user":
clean_messages.append({
"role": "user",
"content": msg.get("content", "")
})
break
print(f"🔍 Processing {len(clean_messages)} messages for Qwen2-0.5B in {'FORCE' if is_force_mode else 'MENTOR'} mode")
# Apply chat template
try:
formatted_prompt = tokenizer.apply_chat_template(
clean_messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e:
print(f"⚠️ Chat template failed, using simple format: {e}")
# Fallback to simple format
formatted_prompt = f"System: {clean_messages[0]['content']}\nUser: {clean_messages[1]['content']}\nAssistant:"
# Tokenize with conservative limits for 0.5B
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=800 # Shorter context for 0.5B
)
# Conservative generation settings for 0.5B model
generation_params = {
"input_ids": inputs.input_ids,
"attention_mask": inputs.attention_mask,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"do_sample": True,
}
if is_force_mode:
# Force mode: Very conservative for 0.5B
generation_params.update({
"max_new_tokens": min(max_tokens, 150), # Very short
"temperature": 0.1, # Very focused
"top_p": 0.7,
"top_k": 20,
"repetition_penalty": 1.05,
})
else:
# Mentor mode: Still conservative but allows more creativity
generation_params.update({
"max_new_tokens": min(max_tokens, 200),
"temperature": 0.3, # Lower than original
"top_p": 0.8,
"top_k": 30,
"repetition_penalty": 1.02,
})
# Generate with timeout for 0.5B
with torch.no_grad():
outputs = model.generate(**generation_params)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
# Extract user message for context
user_message = ""
for msg in reversed(clean_messages):
if msg.get("role") == "user":
user_message = msg.get("content", "")
break
# Clean and return
clean_answer = extract_clean_answer(full_response, formatted_prompt, user_message, is_force_mode)
return clean_answer
except Exception as e:
print(f"❌ Generation error with Qwen2-0.5B: {e}")
mode_text = "direct answer" if is_force_mode else "guided learning"
return f"I encountered an error generating a {mode_text}. Please try a simpler question."
# === Routes ===
@app.get("/")
def root():
return {
"message": "🤖 Apollo AI Backend v2.1 - Qwen2-0.5B Optimized",
"model": "Qwen/Qwen2-0.5B-Instruct with LoRA",
"status": "ready",
"optimizations": ["short_contexts", "conservative_generation", "predefined_responses"],
"features": ["mentor_mode", "force_mode", "0.5B_optimized"],
"modes": {
"mentor": "Guides learning with simple questions",
"force": "Provides direct answers quickly"
}
}
@app.get("/health")
def health():
return {
"status": "healthy",
"model_loaded": True,
"model_size": "0.5B",
"optimizations": "qwen2_0.5B_specific"
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
# Validate API key
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return JSONResponse(
status_code=401,
content={"error": "Missing or invalid Authorization header"}
)
token = auth_header.replace("Bearer ", "").strip()
if token != API_KEY:
return JSONResponse(
status_code=401,
content={"error": "Invalid API key"}
)
# Parse request body
try:
body = await request.json()
messages = body.get("messages", [])
max_tokens = min(body.get("max_tokens", 200), 300) # Cap at 300 for 0.5B
temperature = max(0.1, min(body.get("temperature", 0.5), 0.8)) # Conservative range
# Get mode information
is_force_mode = body.get("force_mode", False)
if not messages or not isinstance(messages, list):
raise ValueError("Messages field is required and must be a list")
except Exception as e:
return JSONResponse(
status_code=400,
content={"error": f"Invalid request body: {str(e)}"}
)
# Validate messages
for i, msg in enumerate(messages):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
return JSONResponse(
status_code=400,
content={"error": f"Invalid message format at index {i}"}
)
try:
print(f"📥 Processing request for Qwen2-0.5B in {'FORCE' if is_force_mode else 'MENTOR'} mode")
print(f"📊 Settings: max_tokens={max_tokens}, temperature={temperature}")
response_content = generate_response(
messages=messages,
is_force_mode=is_force_mode,
max_tokens=max_tokens,
temperature=temperature
)
# Return OpenAI-compatible response
return {
"id": f"chatcmpl-apollo-qwen05b-{hash(str(messages)) % 10000}",
"object": "chat.completion",
"created": int(torch.tensor(0).item()),
"model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-mode",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(str(messages)),
"completion_tokens": len(response_content),
"total_tokens": len(str(messages)) + len(response_content)
},
"apollo_mode": "force" if is_force_mode else "mentor",
"model_optimizations": "qwen2_0.5B_specific"
}
except Exception as e:
print(f"❌ Chat completion error: {e}")
return JSONResponse(
status_code=500,
content={"error": f"Internal server error: {str(e)}"}
)
# === Test endpoint optimized for 0.5B ===
@app.post("/test")
async def test_generation(request: Request):
"""Test endpoint for debugging both modes with 0.5B optimizations"""
try:
body = await request.json()
prompt = body.get("prompt", "How do I print hello world in Python?")
max_tokens = min(body.get("max_tokens", 200), 300)
test_both_modes = body.get("test_both_modes", True)
results = {}
# Test mentor mode
messages_mentor = [{"role": "user", "content": prompt}]
mentor_response = generate_response(messages_mentor, is_force_mode=False, max_tokens=max_tokens, temperature=0.3)
results["mentor_mode"] = {
"response": mentor_response,
"length": len(mentor_response),
"mode": "mentor"
}
if test_both_modes:
# Test force mode
messages_force = [{"role": "user", "content": prompt}]
force_response = generate_response(messages_force, is_force_mode=True, max_tokens=max_tokens, temperature=0.1)
results["force_mode"] = {
"response": force_response,
"length": len(force_response),
"mode": "force"
}
return {
"prompt": prompt,
"results": results,
"model": "Qwen2-0.5B-Instruct",
"optimizations": "0.5B_specific",
"status": "success"
}
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
if __name__ == "__main__":
import uvicorn
print("🚀 Starting Apollo AI Backend v2.1 - Qwen2-0.5B Optimized...")
print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
print("⚡ Optimizations: Short contexts, conservative generation, predefined responses")
print("🎯 Modes: Mentor (simple questions) vs Force (direct answers)")
uvicorn.run(app, host="0.0.0.0", port=7860)