File size: 19,273 Bytes
9c1b824 0ee4730 9c1b824 b397650 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 0ee4730 b397650 9c1b824 b397650 9c1b824 b397650 9c1b824 0ee4730 9c1b824 b397650 0ee4730 9c1b824 b397650 9c1b824 b397650 3afe501 b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 3afe501 0ee4730 7cd3cee fc679ee 0ee4730 b397650 0ee4730 7cd3cee 70df3dc 0ee4730 b397650 70df3dc 0ee4730 b397650 7cd3cee b397650 70df3dc 7cd3cee b397650 70df3dc fc679ee 7cd3cee b397650 70df3dc fc679ee 3afe501 b397650 70df3dc 3afe501 b397650 70df3dc fc679ee b397650 fc679ee b397650 fc679ee b397650 3afe501 70df3dc fc679ee 70df3dc 3afe501 b397650 0ee4730 b397650 0ee4730 b397650 7cd3cee b397650 7cd3cee fc679ee 7cd3cee b397650 7cd3cee b397650 7cd3cee b397650 0ee4730 b397650 0ee4730 b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 fc679ee b397650 0ee4730 fc679ee 0ee4730 b397650 0ee4730 70df3dc 0ee4730 70df3dc 0ee4730 70df3dc 0ee4730 b397650 fc679ee 0ee4730 b397650 0ee4730 9c1b824 0ee4730 b397650 70df3dc b397650 fc679ee b397650 fc679ee 0ee4730 b397650 9c1b824 0ee4730 9c1b824 0ee4730 45afec6 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 b397650 0ee4730 b397650 fc679ee 9c1b824 0ee4730 9c1b824 0ee4730 b397650 0ee4730 9c1b824 3afe501 b397650 fc679ee 0ee4730 fc679ee b397650 3afe501 0ee4730 b397650 0ee4730 70df3dc fc679ee 0ee4730 70df3dc 0ee4730 fc679ee b397650 0ee4730 3afe501 0ee4730 9c1b824 b397650 0ee4730 b397650 0ee4730 fc679ee b397650 fc679ee 0ee4730 fc679ee b397650 fc679ee 0ee4730 fc679ee b397650 fc679ee 0ee4730 fc679ee b397650 3afe501 0ee4730 b397650 0ee4730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware
import re
# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B Optimized", version="2.1.0")
# === CORS ===
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"
# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)
print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()
print("✅ Qwen2-0.5B model ready with optimized settings!")
def get_simple_system_prompt(is_force_mode: bool) -> str:
"""
SIMPLIFIED system prompts optimized for Qwen2-0.5B's 500M parameters.
Shorter, clearer instructions that small models can follow better.
"""
if is_force_mode:
return """You are Apollo AI. Give direct, complete answers.
Rules:
- Provide full working code
- Be concise, max 3 sentences explanation
- Never ask questions back
- Give complete solutions immediately
Example:
User: "print hello world python"
You: "Use print('Hello World'). This outputs text to console."
"""
else:
return """You are Apollo AI tutor. Guide learning with questions.
Rules:
- Ask guiding questions instead of giving answers
- Never give complete working code
- Use hints and partial examples only
- Make students think and discover
Example:
User: "print hello world python"
You: "What function displays text in Python? Try looking up output functions."
"""
def create_simple_force_responses(user_message: str) -> str:
"""
Pre-defined responses for common questions in force mode.
This helps the 0.5B model give consistent direct answers.
"""
user_lower = user_message.lower()
# Python print
if 'print' in user_lower and ('hello' in user_lower or 'world' in user_lower):
return 'Use `print("Hello World")`. This function outputs text to the console.'
# Basic math
if '2+2' in user_lower or '2 + 2' in user_lower:
return '2 + 2 = 4. Addition combines two numbers to get their sum.'
# Python variable
if 'variable' in user_lower and ('python' in user_lower or 'create' in user_lower):
return 'Use `name = "value"`. Variables store data: `x = 5` or `text = "hello"`.'
# Python list
if 'list' in user_lower and 'python' in user_lower and 'create' in user_lower:
return 'Use square brackets: `my_list = [1, 2, 3]`. Lists store multiple items.'
# Python function
if 'function' in user_lower and 'python' in user_lower and ('create' in user_lower or 'define' in user_lower):
return '''Use def keyword:
```python
def my_function():
return "Hello"
```
Functions are reusable code blocks.'''
# Calculator
if 'calculator' in user_lower and ('create' in user_lower or 'make' in user_lower or 'build' in user_lower):
return '''Here's a simple calculator:
```python
a = float(input("First number: "))
b = float(input("Second number: "))
op = input("Operator (+,-,*,/): ")
if op == '+': print(a + b)
elif op == '-': print(a - b)
elif op == '*': print(a * b)
elif op == '/': print(a / b)
```
This performs basic math operations.'''
return None
def create_simple_mentor_responses(user_message: str) -> str:
"""
Pre-defined mentor responses for common questions.
This helps the 0.5B model give consistent guided learning.
"""
user_lower = user_message.lower()
# Python print
if 'print' in user_lower and ('hello' in user_lower or 'world' in user_lower):
return 'What function do you think displays text in Python? Think about showing output. What would it be called?'
# Basic math
if '2+2' in user_lower or '2 + 2' in user_lower:
return 'What do you think 2 + 2 equals? Try calculating it step by step.'
# Python variable
if 'variable' in user_lower and ('python' in user_lower or 'create' in user_lower):
return 'How do you think Python stores data? What symbol might assign a value to a name? Try: name = value'
# Python list
if 'list' in user_lower and 'python' in user_lower and 'create' in user_lower:
return 'What brackets do you think hold multiple items? Try making a list with [item1, item2]. What goes inside?'
# Python function
if 'function' in user_lower and 'python' in user_lower and ('create' in user_lower or 'define' in user_lower):
return '''What keyword defines a function in Python? Try this structure:
```python
___ function_name():
# your code here
```
What goes in the blank? How would you call it?'''
# Calculator
if 'calculator' in user_lower and ('create' in user_lower or 'make' in user_lower or 'build' in user_lower):
return '''What steps would a calculator need?
1. Get two numbers from user - what function gets input?
2. Get operation (+,-,*,/) - how to choose?
3. Calculate result - what structure handles choices?
4. Show result - what displays output?
Try building step 1 first. What function gets user input?'''
return None
def extract_clean_answer(full_response: str, formatted_prompt: str, user_message: str, is_force_mode: bool) -> str:
"""
Optimized cleaning for Qwen2-0.5B responses.
Simpler extraction since 0.5B models produce cleaner output.
"""
if not full_response or len(full_response.strip()) < 5:
return "I apologize, but I couldn't generate a response. Please try again."
print(f"🔍 Raw response length: {len(full_response)}")
print(f"🔍 Mode: {'FORCE' if is_force_mode else 'MENTOR'}")
# Check for pre-defined responses first
if is_force_mode:
predefined = create_simple_force_responses(user_message)
if predefined:
print("✅ Using predefined force response")
return predefined
else:
predefined = create_simple_mentor_responses(user_message)
if predefined:
print("✅ Using predefined mentor response")
return predefined
# Step 1: Remove the input prompt
generated_text = full_response
if formatted_prompt in full_response:
parts = full_response.split(formatted_prompt)
if len(parts) > 1:
generated_text = parts[-1]
# Step 2: Extract assistant content - simplified for 0.5B
assistant_content = generated_text
# Look for assistant markers
if "<|im_start|>assistant" in generated_text:
assistant_parts = generated_text.split("<|im_start|>assistant")
if len(assistant_parts) > 1:
assistant_content = assistant_parts[-1]
if "<|im_end|>" in assistant_content:
assistant_content = assistant_content.split("<|im_end|>")[0]
# Step 3: Basic cleaning - gentler for 0.5B
clean_text = assistant_content.strip()
# Remove template tokens
clean_text = re.sub(r'<\|im_start\|>', '', clean_text)
clean_text = re.sub(r'<\|im_end\|>', '', clean_text)
clean_text = re.sub(r'<\|endoftext\|>', '', clean_text)
# Remove role prefixes
clean_text = re.sub(r'^(system|user|assistant):\s*', '', clean_text, flags=re.MULTILINE)
clean_text = re.sub(r'\n(system|user|assistant):\s*', '\n', clean_text, flags=re.MULTILINE)
# Clean whitespace
clean_text = re.sub(r'\n{3,}', '\n\n', clean_text)
clean_text = clean_text.strip()
# Step 4: Fallback handling for 0.5B
if not clean_text or len(clean_text) < 10:
if is_force_mode:
return "Could you please be more specific about what you need?"
else:
return "What specific aspect would you like to explore? What's your approach?"
# Step 5: Length control for 0.5B
if len(clean_text) > 500: # Keep responses shorter for 0.5B
sentences = clean_text.split('. ')
if len(sentences) > 3:
clean_text = '. '.join(sentences[:3]) + '.'
print(f"🧹 Final cleaned answer length: {len(clean_text)}")
return clean_text
def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
"""
Optimized generation for Qwen2-0.5B with shorter contexts and conservative settings.
"""
try:
# Check for simple predefined responses first
if messages and len(messages) > 0:
last_user_msg = ""
for msg in reversed(messages):
if msg.get("role") == "user":
last_user_msg = msg.get("content", "")
break
if last_user_msg:
if is_force_mode:
predefined = create_simple_force_responses(last_user_msg)
if predefined:
return predefined
else:
predefined = create_simple_mentor_responses(last_user_msg)
if predefined:
return predefined
# Build simple conversation for 0.5B model
clean_messages = []
# Add simple system prompt
system_prompt = get_simple_system_prompt(is_force_mode)
clean_messages.append({
"role": "system",
"content": system_prompt
})
# Add only the last user message to keep context short for 0.5B
if messages and len(messages) > 0:
for msg in reversed(messages):
if msg.get("role") == "user":
clean_messages.append({
"role": "user",
"content": msg.get("content", "")
})
break
print(f"🔍 Processing {len(clean_messages)} messages for Qwen2-0.5B in {'FORCE' if is_force_mode else 'MENTOR'} mode")
# Apply chat template
try:
formatted_prompt = tokenizer.apply_chat_template(
clean_messages,
tokenize=False,
add_generation_prompt=True
)
except Exception as e:
print(f"⚠️ Chat template failed, using simple format: {e}")
# Fallback to simple format
formatted_prompt = f"System: {clean_messages[0]['content']}\nUser: {clean_messages[1]['content']}\nAssistant:"
# Tokenize with conservative limits for 0.5B
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=800 # Shorter context for 0.5B
)
# Conservative generation settings for 0.5B model
generation_params = {
"input_ids": inputs.input_ids,
"attention_mask": inputs.attention_mask,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"do_sample": True,
}
if is_force_mode:
# Force mode: Very conservative for 0.5B
generation_params.update({
"max_new_tokens": min(max_tokens, 150), # Very short
"temperature": 0.1, # Very focused
"top_p": 0.7,
"top_k": 20,
"repetition_penalty": 1.05,
})
else:
# Mentor mode: Still conservative but allows more creativity
generation_params.update({
"max_new_tokens": min(max_tokens, 200),
"temperature": 0.3, # Lower than original
"top_p": 0.8,
"top_k": 30,
"repetition_penalty": 1.02,
})
# Generate with timeout for 0.5B
with torch.no_grad():
outputs = model.generate(**generation_params)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
# Extract user message for context
user_message = ""
for msg in reversed(clean_messages):
if msg.get("role") == "user":
user_message = msg.get("content", "")
break
# Clean and return
clean_answer = extract_clean_answer(full_response, formatted_prompt, user_message, is_force_mode)
return clean_answer
except Exception as e:
print(f"❌ Generation error with Qwen2-0.5B: {e}")
mode_text = "direct answer" if is_force_mode else "guided learning"
return f"I encountered an error generating a {mode_text}. Please try a simpler question."
# === Routes ===
@app.get("/")
def root():
return {
"message": "🤖 Apollo AI Backend v2.1 - Qwen2-0.5B Optimized",
"model": "Qwen/Qwen2-0.5B-Instruct with LoRA",
"status": "ready",
"optimizations": ["short_contexts", "conservative_generation", "predefined_responses"],
"features": ["mentor_mode", "force_mode", "0.5B_optimized"],
"modes": {
"mentor": "Guides learning with simple questions",
"force": "Provides direct answers quickly"
}
}
@app.get("/health")
def health():
return {
"status": "healthy",
"model_loaded": True,
"model_size": "0.5B",
"optimizations": "qwen2_0.5B_specific"
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
# Validate API key
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return JSONResponse(
status_code=401,
content={"error": "Missing or invalid Authorization header"}
)
token = auth_header.replace("Bearer ", "").strip()
if token != API_KEY:
return JSONResponse(
status_code=401,
content={"error": "Invalid API key"}
)
# Parse request body
try:
body = await request.json()
messages = body.get("messages", [])
max_tokens = min(body.get("max_tokens", 200), 300) # Cap at 300 for 0.5B
temperature = max(0.1, min(body.get("temperature", 0.5), 0.8)) # Conservative range
# Get mode information
is_force_mode = body.get("force_mode", False)
if not messages or not isinstance(messages, list):
raise ValueError("Messages field is required and must be a list")
except Exception as e:
return JSONResponse(
status_code=400,
content={"error": f"Invalid request body: {str(e)}"}
)
# Validate messages
for i, msg in enumerate(messages):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
return JSONResponse(
status_code=400,
content={"error": f"Invalid message format at index {i}"}
)
try:
print(f"📥 Processing request for Qwen2-0.5B in {'FORCE' if is_force_mode else 'MENTOR'} mode")
print(f"📊 Settings: max_tokens={max_tokens}, temperature={temperature}")
response_content = generate_response(
messages=messages,
is_force_mode=is_force_mode,
max_tokens=max_tokens,
temperature=temperature
)
# Return OpenAI-compatible response
return {
"id": f"chatcmpl-apollo-qwen05b-{hash(str(messages)) % 10000}",
"object": "chat.completion",
"created": int(torch.tensor(0).item()),
"model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-mode",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(str(messages)),
"completion_tokens": len(response_content),
"total_tokens": len(str(messages)) + len(response_content)
},
"apollo_mode": "force" if is_force_mode else "mentor",
"model_optimizations": "qwen2_0.5B_specific"
}
except Exception as e:
print(f"❌ Chat completion error: {e}")
return JSONResponse(
status_code=500,
content={"error": f"Internal server error: {str(e)}"}
)
# === Test endpoint optimized for 0.5B ===
@app.post("/test")
async def test_generation(request: Request):
"""Test endpoint for debugging both modes with 0.5B optimizations"""
try:
body = await request.json()
prompt = body.get("prompt", "How do I print hello world in Python?")
max_tokens = min(body.get("max_tokens", 200), 300)
test_both_modes = body.get("test_both_modes", True)
results = {}
# Test mentor mode
messages_mentor = [{"role": "user", "content": prompt}]
mentor_response = generate_response(messages_mentor, is_force_mode=False, max_tokens=max_tokens, temperature=0.3)
results["mentor_mode"] = {
"response": mentor_response,
"length": len(mentor_response),
"mode": "mentor"
}
if test_both_modes:
# Test force mode
messages_force = [{"role": "user", "content": prompt}]
force_response = generate_response(messages_force, is_force_mode=True, max_tokens=max_tokens, temperature=0.1)
results["force_mode"] = {
"response": force_response,
"length": len(force_response),
"mode": "force"
}
return {
"prompt": prompt,
"results": results,
"model": "Qwen2-0.5B-Instruct",
"optimizations": "0.5B_specific",
"status": "success"
}
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
if __name__ == "__main__":
import uvicorn
print("🚀 Starting Apollo AI Backend v2.1 - Qwen2-0.5B Optimized...")
print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
print("⚡ Optimizations: Short contexts, conservative generation, predefined responses")
print("🎯 Modes: Mentor (simple questions) vs Force (direct answers)")
uvicorn.run(app, host="0.0.0.0", port=7860) |