Ais
commited on
Update app/main.py
Browse files- app/main.py +107 -56
app/main.py
CHANGED
@@ -41,6 +41,57 @@ model.eval()
|
|
41 |
|
42 |
print("✅ Model and adapter loaded successfully.")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# === Root Route ===
|
45 |
@app.get("/")
|
46 |
def root():
|
@@ -64,79 +115,74 @@ async def chat(request: Request):
|
|
64 |
messages = body.get("messages", [])
|
65 |
if not messages or not isinstance(messages, list):
|
66 |
raise ValueError("Invalid or missing 'messages' field.")
|
67 |
-
|
68 |
-
# Extract system and user messages
|
69 |
-
system_message = ""
|
70 |
-
user_messages = []
|
71 |
-
|
72 |
-
for msg in messages:
|
73 |
-
if msg.get("role") == "system":
|
74 |
-
system_message = msg.get("content", "")
|
75 |
-
elif msg.get("role") in ["user", "assistant"]:
|
76 |
-
user_messages.append(msg)
|
77 |
-
|
78 |
-
# Get the last user message
|
79 |
-
if not user_messages:
|
80 |
-
raise ValueError("No user messages found.")
|
81 |
-
|
82 |
-
user_prompt = user_messages[-1]["content"]
|
83 |
-
|
84 |
except Exception as e:
|
85 |
return JSONResponse(status_code=400, content={"error": f"Bad request: {str(e)}"})
|
86 |
|
87 |
-
# ✅ FIXED:
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cpu")
|
92 |
|
93 |
-
# ✅ Generate Response with
|
94 |
with torch.no_grad():
|
95 |
outputs = model.generate(
|
96 |
**inputs,
|
97 |
-
max_new_tokens=
|
98 |
temperature=0.7,
|
99 |
top_p=0.9,
|
100 |
do_sample=True,
|
101 |
pad_token_id=tokenizer.eos_token_id,
|
102 |
-
repetition_penalty=1.
|
103 |
-
length_penalty=1.0
|
|
|
104 |
)
|
105 |
|
106 |
-
|
|
|
107 |
|
108 |
-
|
109 |
-
final_answer = decoded.split("<|im_start|>assistant\n")[-1].strip()
|
110 |
|
111 |
-
#
|
112 |
-
if
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
]):
|
128 |
-
continue
|
129 |
-
|
130 |
-
# This looks like actual content
|
131 |
-
found_content = True
|
132 |
-
cleaned_lines.append(line)
|
133 |
-
|
134 |
-
if found_content:
|
135 |
-
final_answer = '\n'.join(cleaned_lines)
|
136 |
|
137 |
-
|
138 |
-
if len(final_answer.strip()) < 10 or final_answer.lower().startswith(("system", "user", "assistant")):
|
139 |
-
final_answer = "I understand your question. Let me help you with that."
|
140 |
|
141 |
# ✅ OpenAI-style Response
|
142 |
return {
|
@@ -152,5 +198,10 @@ async def chat(request: Request):
|
|
152 |
},
|
153 |
"finish_reason": "stop"
|
154 |
}
|
155 |
-
]
|
|
|
|
|
|
|
|
|
|
|
156 |
}
|
|
|
41 |
|
42 |
print("✅ Model and adapter loaded successfully.")
|
43 |
|
44 |
+
def clean_response(raw_response):
|
45 |
+
"""
|
46 |
+
Clean the model response by removing unwanted artifacts while preserving the actual answer.
|
47 |
+
"""
|
48 |
+
if not raw_response or len(raw_response.strip()) < 2:
|
49 |
+
return "I apologize, but I couldn't generate a proper response. Please try again."
|
50 |
+
|
51 |
+
# Remove common chat template artifacts
|
52 |
+
cleaned = raw_response.strip()
|
53 |
+
|
54 |
+
# Remove system/user/assistant prefixes that might leak through
|
55 |
+
prefixes_to_remove = [
|
56 |
+
"system\n", "user\n", "assistant\n",
|
57 |
+
"System:", "User:", "Assistant:",
|
58 |
+
"<|im_start|>", "<|im_end|>",
|
59 |
+
"You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
60 |
+
"You are a helpful assistant.",
|
61 |
+
"I am a helpful assistant.",
|
62 |
+
"As a helpful assistant,",
|
63 |
+
]
|
64 |
+
|
65 |
+
for prefix in prefixes_to_remove:
|
66 |
+
if cleaned.lower().startswith(prefix.lower()):
|
67 |
+
cleaned = cleaned[len(prefix):].strip()
|
68 |
+
|
69 |
+
# Remove any remaining template artifacts
|
70 |
+
lines = cleaned.split('\n')
|
71 |
+
filtered_lines = []
|
72 |
+
|
73 |
+
for line in lines:
|
74 |
+
line_stripped = line.strip()
|
75 |
+
|
76 |
+
# Skip empty lines at the beginning
|
77 |
+
if not line_stripped and not filtered_lines:
|
78 |
+
continue
|
79 |
+
|
80 |
+
# Skip obvious template artifacts
|
81 |
+
if line_stripped in ["system", "user", "assistant"]:
|
82 |
+
continue
|
83 |
+
|
84 |
+
filtered_lines.append(line)
|
85 |
+
|
86 |
+
cleaned = '\n'.join(filtered_lines).strip()
|
87 |
+
|
88 |
+
# If we still have content, return it
|
89 |
+
if cleaned and len(cleaned) > 5:
|
90 |
+
return cleaned
|
91 |
+
|
92 |
+
# Fallback only if truly empty
|
93 |
+
return "I understand your question. Let me help you with that."
|
94 |
+
|
95 |
# === Root Route ===
|
96 |
@app.get("/")
|
97 |
def root():
|
|
|
115 |
messages = body.get("messages", [])
|
116 |
if not messages or not isinstance(messages, list):
|
117 |
raise ValueError("Invalid or missing 'messages' field.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
except Exception as e:
|
119 |
return JSONResponse(status_code=400, content={"error": f"Bad request: {str(e)}"})
|
120 |
|
121 |
+
# ✅ FIXED: Use proper Qwen2.5 chat template formatting
|
122 |
+
try:
|
123 |
+
# Use the tokenizer's built-in chat template - this is the correct way!
|
124 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
125 |
+
messages,
|
126 |
+
tokenize=False,
|
127 |
+
add_generation_prompt=True
|
128 |
+
)
|
129 |
+
|
130 |
+
print(f"🔍 Formatted prompt: {formatted_prompt}")
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print(f"❌ Chat template error: {e}")
|
134 |
+
# Fallback to manual formatting if needed
|
135 |
+
formatted_prompt = ""
|
136 |
+
for msg in messages:
|
137 |
+
role = msg.get("role", "user")
|
138 |
+
content = msg.get("content", "")
|
139 |
+
if role == "system":
|
140 |
+
formatted_prompt += f"<|im_start|>system\n{content}<|im_end|>\n"
|
141 |
+
elif role == "user":
|
142 |
+
formatted_prompt += f"<|im_start|>user\n{content}<|im_end|>\n"
|
143 |
+
elif role == "assistant":
|
144 |
+
formatted_prompt += f"<|im_start|>assistant\n{content}<|im_end|>\n"
|
145 |
+
formatted_prompt += "<|im_start|>assistant\n"
|
146 |
|
147 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cpu")
|
148 |
|
149 |
+
# ✅ Generate Response with optimized settings
|
150 |
with torch.no_grad():
|
151 |
outputs = model.generate(
|
152 |
**inputs,
|
153 |
+
max_new_tokens=512, # Increased for better responses
|
154 |
temperature=0.7,
|
155 |
top_p=0.9,
|
156 |
do_sample=True,
|
157 |
pad_token_id=tokenizer.eos_token_id,
|
158 |
+
repetition_penalty=1.05, # Slightly reduced
|
159 |
+
length_penalty=1.0,
|
160 |
+
early_stopping=True
|
161 |
)
|
162 |
|
163 |
+
# ✅ FIXED: Better response extraction
|
164 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
165 |
|
166 |
+
print(f"🔍 Full generated response: {full_response}")
|
|
|
167 |
|
168 |
+
# Extract only the new generated part (after the prompt)
|
169 |
+
if formatted_prompt in full_response:
|
170 |
+
generated_part = full_response.split(formatted_prompt)[-1].strip()
|
171 |
+
else:
|
172 |
+
# If we can't find the exact prompt, try to extract the assistant's response
|
173 |
+
assistant_marker = "<|im_start|>assistant\n"
|
174 |
+
if assistant_marker in full_response:
|
175 |
+
parts = full_response.split(assistant_marker)
|
176 |
+
generated_part = parts[-1].split("<|im_end|>")[0].strip() if len(parts) > 1 else full_response
|
177 |
+
else:
|
178 |
+
generated_part = full_response
|
179 |
+
|
180 |
+
print(f"🔍 Extracted generated part: {generated_part}")
|
181 |
+
|
182 |
+
# ✅ Clean the response but keep it intact
|
183 |
+
final_answer = clean_response(generated_part)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
print(f"🔍 Final cleaned answer: {final_answer}")
|
|
|
|
|
186 |
|
187 |
# ✅ OpenAI-style Response
|
188 |
return {
|
|
|
198 |
},
|
199 |
"finish_reason": "stop"
|
200 |
}
|
201 |
+
],
|
202 |
+
"usage": {
|
203 |
+
"prompt_tokens": len(inputs.input_ids[0]),
|
204 |
+
"completion_tokens": len(outputs[0]) - len(inputs.input_ids[0]),
|
205 |
+
"total_tokens": len(outputs[0])
|
206 |
+
}
|
207 |
}
|