|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from peft import PeftModel |
|
import torch |
|
|
|
ADAPTER_PATH = "adapter" |
|
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
) |
|
model = PeftModel.from_pretrained(model, ADAPTER_PATH) |
|
model.eval() |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
def generate_response(prompt: str) -> str: |
|
formatted = f"<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
inputs = tokenizer(formatted, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
decoded = tokenizer.decode(output[0], skip_special_tokens=True) |
|
answer = decoded.split("<|im_start|>assistant\n")[-1].strip() |
|
return answer |