File size: 1,215 Bytes
1cf2bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from peft import PeftModel
import torch

ADAPTER_PATH = "adapter"
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    device_map="auto",
    trust_remote_code=True,
    torch_dtype=torch.float16
)
model = PeftModel.from_pretrained(model, ADAPTER_PATH)
model.eval()

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

def generate_response(prompt: str) -> str:
    formatted = f"<|im_start|>system\nYou are a helpful AI assistant.<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
    inputs = tokenizer(formatted, return_tensors="pt").to(model.device)
    with torch.no_grad():
        output = model.generate(
            **inputs,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    decoded = tokenizer.decode(output[0], skip_special_tokens=True)
    answer = decoded.split("<|im_start|>assistant\n")[-1].strip()
    return answer