|
from fastapi import FastAPI, Request, HTTPException |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel |
|
import os |
|
|
|
|
|
HF_MODEL = "Qwen/Qwen2.5-0.5B-Instruct" |
|
ADAPTER_PATH = "adapter" |
|
API_KEY = os.getenv("API_KEY", "your-secret-key") |
|
|
|
|
|
app = FastAPI() |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
print("🔧 Loading model on CPU...") |
|
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(HF_MODEL, torch_dtype=torch.float32, trust_remote_code=True) |
|
model = PeftModel.from_pretrained(model, ADAPTER_PATH) |
|
model = model.to("cpu") |
|
model.eval() |
|
print("✅ Model ready on CPU.") |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
prompt: str |
|
api_key: str |
|
|
|
@app.get("/") |
|
def root(): |
|
return {"message": "✅ Qwen2.5 Chat API running."} |
|
|
|
@app.post("/chat") |
|
def chat(req: ChatRequest): |
|
if req.api_key != API_KEY: |
|
raise HTTPException(status_code=401, detail="Invalid API Key") |
|
|
|
input_text = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{req.prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt").to("cpu") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
final_resp = response.split("<|im_start|>assistant\n")[-1].strip() |
|
return {"response": final_resp} |