from fastapi import FastAPI, Request, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import os # === CONFIG === HF_MODEL = "Qwen/Qwen2.5-0.5B-Instruct" ADAPTER_PATH = "adapter" # folder where your LoRA is saved API_KEY = os.getenv("API_KEY", "your-secret-key") # Set in HF Space secrets # === FastAPI Setup === app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # adjust if needed allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # === Load Model & Tokenizer (CPU only) === print("🔧 Loading model on CPU...") tokenizer = AutoTokenizer.from_pretrained(HF_MODEL, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(HF_MODEL, torch_dtype=torch.float32, trust_remote_code=True) model = PeftModel.from_pretrained(model, ADAPTER_PATH) model = model.to("cpu") model.eval() print("✅ Model ready on CPU.") # === Request Schema === class ChatRequest(BaseModel): prompt: str api_key: str @app.get("/") def root(): return {"message": "✅ Qwen2.5 Chat API running."} @app.post("/chat") def chat(req: ChatRequest): if req.api_key != API_KEY: raise HTTPException(status_code=401, detail="Invalid API Key") input_text = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{req.prompt}<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer(input_text, return_tensors="pt").to("cpu") outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, do_sample=True, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract response after assistant tag final_resp = response.split("<|im_start|>assistant\n")[-1].strip() return {"response": final_resp}