|
from fastapi import FastAPI, Request |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer |
|
from peft import PeftModel |
|
import torch |
|
import os |
|
import gdown |
|
|
|
app = FastAPI() |
|
|
|
|
|
ADAPTER_DIR = "adapter" |
|
ADAPTER_PATH = os.path.join(ADAPTER_DIR, "adapter_model.safetensors") |
|
DRIVE_FILE_ID = "1wnuE5t_m4ojI7YqxXZ8lBdtDFoHJJ6_H" |
|
|
|
if not os.path.exists(ADAPTER_PATH): |
|
os.makedirs(ADAPTER_DIR, exist_ok=True) |
|
gdown.download(f"https://drive.google.com/uc?id={DRIVE_FILE_ID}", ADAPTER_PATH, quiet=False) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2-0.5B-Instruct", |
|
device_map="auto", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") |
|
|
|
|
|
model = PeftModel.from_pretrained(base_model, ADAPTER_DIR) |
|
model.eval() |
|
|
|
@app.post("/chat") |
|
async def chat(request: Request): |
|
data = await request.json() |
|
prompt = data.get("prompt") |
|
|
|
if not prompt: |
|
return {"error": "No prompt provided."} |
|
|
|
full_prompt = f"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
temperature=0.7, |
|
do_sample=True, |
|
top_p=0.9 |
|
) |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
response = response.split("<|im_start|>assistant\n")[-1].strip() |
|
return {"response": response} |
|
|