File size: 8,476 Bytes
9c1b824 95bcbae 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 0ee4730 f87f8f7 9c1b824 b397650 9c1b824 f87f8f7 9c1b824 0ee4730 9c1b824 f87f8f7 0ee4730 9c1b824 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae 84677b5 95bcbae afb15e3 95bcbae fc679ee 95bcbae 4be81ed 95bcbae 6b66b4f 95bcbae 0ee4730 f87f8f7 0ee4730 f87f8f7 95bcbae f87f8f7 95bcbae 0ee4730 9c1b824 0ee4730 95bcbae f87f8f7 70df3dc f87f8f7 95bcbae f87f8f7 0ee4730 f87f8f7 95bcbae f87f8f7 9c1b824 0ee4730 f87f8f7 9c1b824 f87f8f7 45afec6 9c1b824 f87f8f7 9c1b824 f87f8f7 9c1b824 f87f8f7 95bcbae fc679ee f87f8f7 afb15e3 f87f8f7 0ee4730 9c1b824 f87f8f7 9c1b824 3afe501 95bcbae f87f8f7 0ee4730 f87f8f7 3afe501 0ee4730 95bcbae f87f8f7 95bcbae f87f8f7 95bcbae 0ee4730 3afe501 f87f8f7 0ee4730 95bcbae f87f8f7 95bcbae 0ee4730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware
# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B", version="3.0.0")
# === CORS ===
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"
# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)
print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()
print("✅ Qwen2-0.5B model ready!")
def create_conversation_prompt(messages: list, is_force_mode: bool) -> str:
"""
Create a simple conversation prompt with appropriate system instruction
"""
if is_force_mode:
system_prompt = "You are a helpful coding assistant. Give direct, clear answers with code examples when needed. Be concise and practical."
else:
system_prompt = "You are a teacher helping a student learn programming. Don't give direct answers. Instead, ask guiding questions to help them think and discover the solution themselves. Guide them step by step with questions like 'What do you think...?' or 'How would you...?'"
# Build conversation
conversation = f"System: {system_prompt}\n\n"
# Add last 6 messages (3 pairs) for context
recent_messages = messages[-6:] if len(messages) > 6 else messages
for msg in recent_messages:
role = msg.get("role", "")
content = msg.get("content", "")
if role == "user":
conversation += f"Student: {content}\n"
elif role == "assistant":
conversation += f"Assistant: {content}\n"
conversation += "Assistant:"
return conversation
def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
"""
Generate response using the actual AI model
"""
try:
# Create conversation prompt
prompt = create_conversation_prompt(messages, is_force_mode)
print(f"🎯 Generating {'FORCE' if is_force_mode else 'MENTOR'} response")
print(f"📝 Prompt length: {len(prompt)}")
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
top_p=0.9,
repetition_penalty=1.1
)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generated part
response = full_response[len(prompt):].strip()
# Clean up response
response = response.replace("Student:", "").replace("Assistant:", "").strip()
# Remove any system mentions
if response.startswith("System:"):
response = response.split("\n", 1)[-1].strip()
print(f"✅ Generated response length: {len(response)}")
if not response or len(response) < 10:
# Fallback responses
if is_force_mode:
return "I need more specific information to provide a direct answer. Please clarify your question."
else:
return "That's an interesting question! What do you think the answer might be? Try to break it down step by step."
return response
except Exception as e:
print(f"❌ Generation error: {e}")
if is_force_mode:
return "I encountered an error. Please try rephrasing your question."
else:
return "I had trouble processing that. Can you tell me what you're trying to understand?"
# === Routes ===
@app.get("/")
def root():
return {
"message": "🤖 Apollo AI Backend v3.0 - Qwen2-0.5B",
"model": "Qwen/Qwen2-0.5B-Instruct with LoRA",
"status": "ready",
"modes": {
"mentor": "Guides learning with questions",
"force": "Provides direct answers"
}
}
@app.get("/health")
def health():
return {
"status": "healthy",
"model_loaded": True,
"model_size": "0.5B"
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
# Validate API key
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return JSONResponse(
status_code=401,
content={"error": "Missing or invalid Authorization header"}
)
token = auth_header.replace("Bearer ", "").strip()
if token != API_KEY:
return JSONResponse(
status_code=401,
content={"error": "Invalid API key"}
)
# Parse request body
try:
body = await request.json()
messages = body.get("messages", [])
max_tokens = min(body.get("max_tokens", 200), 400)
temperature = max(0.1, min(body.get("temperature", 0.7), 1.0))
is_force_mode = body.get("force_mode", False)
if not messages or not isinstance(messages, list):
raise ValueError("Messages field is required and must be a list")
except Exception as e:
return JSONResponse(
status_code=400,
content={"error": f"Invalid request body: {str(e)}"}
)
# Validate messages
for i, msg in enumerate(messages):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
return JSONResponse(
status_code=400,
content={"error": f"Invalid message format at index {i}"}
)
try:
print(f"📥 Processing request in {'FORCE' if is_force_mode else 'MENTOR'} mode")
print(f"📊 Total messages: {len(messages)}")
response_content = generate_response(
messages=messages,
is_force_mode=is_force_mode,
max_tokens=max_tokens,
temperature=temperature
)
return {
"id": f"chatcmpl-apollo-{hash(str(messages)) % 10000}",
"object": "chat.completion",
"created": int(torch.tensor(0).item()),
"model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(str(messages)),
"completion_tokens": len(response_content),
"total_tokens": len(str(messages)) + len(response_content)
},
"apollo_mode": "force" if is_force_mode else "mentor"
}
except Exception as e:
print(f"❌ Chat completion error: {e}")
return JSONResponse(
status_code=500,
content={"error": f"Internal server error: {str(e)}"}
)
if __name__ == "__main__":
import uvicorn
print("🚀 Starting Apollo AI Backend v3.0 - Simple & Clean...")
print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
print("🎯 Mentor Mode: Asks guiding questions")
print("⚡ Force Mode: Gives direct answers")
uvicorn.run(app, host="0.0.0.0", port=7860) |