File size: 12,906 Bytes
9c1b824
 
 
 
 
 
 
 
 
afb15e3
9c1b824
0ee4730
9c1b824
 
 
 
 
 
 
 
0ee4730
 
9c1b824
 
 
0ee4730
b397650
9c1b824
b397650
 
9c1b824
b397650
9c1b824
 
 
0ee4730
 
 
9c1b824
b397650
0ee4730
9c1b824
 
379615b
9c1b824
379615b
b397650
afb15e3
b397650
379615b
afb15e3
 
 
 
 
 
 
 
 
 
 
84677b5
afb15e3
 
 
 
 
 
 
 
b397650
afb15e3
379615b
b397650
afb15e3
379615b
0ee4730
379615b
 
 
 
 
 
 
0ee4730
379615b
 
3afe501
afb15e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b397650
0ee4730
afb15e3
0ee4730
 
afb15e3
379615b
 
afb15e3
c5cd891
afb15e3
 
 
 
 
 
 
 
 
 
 
 
 
379615b
 
 
 
afb15e3
379615b
 
 
afb15e3
 
379615b
 
 
 
 
 
84677b5
379615b
 
84677b5
379615b
 
84677b5
afb15e3
 
 
 
 
 
 
 
84677b5
afb15e3
 
fc679ee
afb15e3
 
0ee4730
afb15e3
 
379615b
afb15e3
379615b
afb15e3
0ee4730
afb15e3
0ee4730
 
194b2d7
afb15e3
84677b5
afb15e3
84677b5
afb15e3
0ee4730
 
9c1b824
 
0ee4730
afb15e3
194b2d7
70df3dc
fc679ee
afb15e3
 
 
 
0ee4730
 
 
 
b397650
 
 
afb15e3
 
b397650
9c1b824
 
0ee4730
 
9c1b824
 
0ee4730
 
 
 
45afec6
9c1b824
 
0ee4730
 
 
 
9c1b824
0ee4730
9c1b824
 
 
84677b5
379615b
0ee4730
afb15e3
b397650
fc679ee
afb15e3
 
 
9c1b824
0ee4730
 
9c1b824
0ee4730
 
 
 
 
b397650
0ee4730
 
 
 
 
 
9c1b824
3afe501
afb15e3
379615b
afb15e3
fc679ee
afb15e3
0ee4730
 
fc679ee
b397650
 
3afe501
 
afb15e3
 
 
0ee4730
379615b
0ee4730
70df3dc
afb15e3
0ee4730
 
 
 
 
 
 
 
 
 
 
70df3dc
 
0ee4730
fc679ee
afb15e3
 
 
0ee4730
3afe501
 
0ee4730
 
 
 
9c1b824
 
0ee4730
 
afb15e3
b397650
afb15e3
 
 
0ee4730
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware

# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B", version="3.1.0-FIXED")

# === CORS ===
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"

# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    trust_remote_code=True,
    torch_dtype=torch.float32,
    device_map="cpu"
)

print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()

print("✅ Qwen2-0.5B model ready!")

def create_conversation_prompt(messages: list, is_force_mode: bool) -> str:
    """
    Create a conversation prompt with STRONG mode enforcement
    """
    if is_force_mode:
        system_prompt = """FORCE MODE - DIRECT ANSWERS ONLY:
You MUST give direct, complete, factual answers. Do NOT ask questions. Provide exact solutions, working code, and clear explanations.

EXAMPLE FORCE RESPONSE:
Q: What does len() do in Python?
A: len() returns the number of items in an object. Examples:
- len([1,2,3]) returns 3
- len("hello") returns 5  
- len({1,2,3}) returns 3

Always be direct and informative. Never ask "What do you think?" or similar questions."""
    else:
        system_prompt = """MENTOR MODE - GUIDED LEARNING ONLY:
You are a programming teacher. You MUST guide students to discover answers themselves. NEVER give direct answers or complete solutions. ALWAYS respond with guiding questions and hints.

EXAMPLE MENTOR RESPONSE:
Q: What does len() do in Python?
A: Great question! What do you think might happen if you run len([1,2,3]) in Python? Can you guess what number it would return? Try it and see! What pattern do you notice?

Always ask questions to guide learning. Never give direct answers."""
    
    # Build conversation with recent context
    conversation = f"System: {system_prompt}\n\n"
    
    # Add last 6 messages (3 pairs) for context but prioritize mode compliance
    recent_messages = messages[-6:] if len(messages) > 6 else messages
    
    for msg in recent_messages:
        role = msg.get("role", "")
        content = msg.get("content", "")
        if role == "user":
            conversation += f"Student: {content}\n"
        elif role == "assistant":
            conversation += f"Assistant: {content}\n"
    
    conversation += "Assistant:"
    return conversation

def validate_response_mode(response: str, is_force_mode: bool) -> str:
    """
    CRITICAL: Enforce mode compliance in responses
    """
    response = response.strip()
    
    if is_force_mode:
        # Force mode: Must be direct, no questions
        has_questioning = any(phrase in response.lower() for phrase in [
            "what do you think", "can you tell me", "what would happen", 
            "try it", "guess", "what pattern", "how do you", "what's your"
        ])
        
        if has_questioning or response.count("?") > 1:
            # Convert to direct answer
            print("🔧 Converting to direct answer for force mode")
            direct_parts = []
            for sentence in response.split("."):
                if "?" not in sentence and len(sentence.strip()) > 10:
                    direct_parts.append(sentence.strip())
            
            if direct_parts:
                return ". ".join(direct_parts[:2]) + "."
            else:
                return "Here's the direct answer: " + response.split("?")[0].strip() + "."
    
    else:
        # Mentor mode: Must have questions and guidance
        has_questions = "?" in response
        has_guidance = any(phrase in response.lower() for phrase in [
            "what do you think", "can you", "try", "what would", "how do you", "what pattern"
        ])
        
        if not has_questions and not has_guidance:
            # Convert to guiding questions
            print("🔧 Adding guiding questions for mentor mode")
            return f"Interesting! {response} What do you think about this? Can you tell me what part makes most sense to you?"
    
    return response

def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
    """
    Generate response using the AI model with STRONG mode enforcement
    """
    try:
        # Create conversation prompt with strong mode directives
        prompt = create_conversation_prompt(messages, is_force_mode)
        
        print(f"🎯 Generating {'FORCE' if is_force_mode else 'MENTOR'} response with FIXED logic")
        print(f"🔍 DEBUG: force_mode = {is_force_mode}")
        print(f"📝 System prompt preview: {prompt.split('Student:')[0][:150]}...")
        
        # Adjust generation parameters based on mode
        if is_force_mode:
            # Force mode: Lower temperature for more focused, direct responses
            generation_temp = 0.2
            generation_tokens = min(max_tokens, 250)
        else:
            # Mentor mode: Slightly higher temperature for more varied questioning
            generation_temp = 0.4
            generation_tokens = min(max_tokens, 200)
        
        print(f"🎛️ Using temperature: {generation_temp}, max_tokens: {generation_tokens}")
        
        # Tokenize input
        inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
        
        # Generate response with mode-specific parameters
        with torch.no_grad():
            outputs = model.generate(
                inputs.input_ids,
                max_new_tokens=generation_tokens,
                temperature=generation_temp,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                top_p=0.9,
                repetition_penalty=1.1
            )
        
        # Decode response
        full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract only the new generated part
        response = full_response[len(prompt):].strip()
        
        # Clean up response - remove role markers
        response = response.replace("Student:", "").replace("Assistant:", "").replace("System:", "").strip()
        
        # Remove any remaining conversation artifacts
        if "\n" in response:
            response = response.split("\n")[0].strip()
        
        print(f"✅ Raw generated response: {response[:100]}...")
        
        # CRITICAL: Validate and enforce mode compliance
        validated_response = validate_response_mode(response, is_force_mode)
        
        print(f"✅ Final validated response length: {len(validated_response)}")
        print(f"📝 Mode compliance: {'FORCE' if is_force_mode else 'MENTOR'}")
        
        if not validated_response or len(validated_response) < 10:
            # Strong fallback responses based on mode
            if is_force_mode:
                return "len() returns the number of items in a sequence. For example: len([1,2,3]) returns 3, len('hello') returns 5."
            else:
                return "What do you think len() might do? Try running len([1,2,3]) and see what happens! What number do you get?"
        
        return validated_response
        
    except Exception as e:
        print(f"❌ Generation error: {e}")
        # Mode-specific error fallbacks
        if is_force_mode:
            return "I need you to provide a more specific question so I can give you the exact answer you need."
        else:
            return "That's an interesting question! What do you think might be the answer? Can you break it down step by step?"

# === Routes ===
@app.get("/")
def root():
    return {
        "message": "🤖 Apollo AI Backend v3.1-FIXED - Qwen2-0.5B",
        "model": "Qwen/Qwen2-0.5B-Instruct with LoRA", 
        "status": "ready",
        "modes": {
            "mentor": "Guides learning with questions - FIXED",
            "force": "Provides direct answers - FIXED"
        },
        "fixes": "Strong mode enforcement, response validation"
    }

@app.get("/health")
def health():
    return {
        "status": "healthy", 
        "model_loaded": True, 
        "model_size": "0.5B",
        "version": "3.1-FIXED"
    }

@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
    # Validate API key
    auth_header = request.headers.get("Authorization", "")
    if not auth_header.startswith("Bearer "):
        return JSONResponse(
            status_code=401, 
            content={"error": "Missing or invalid Authorization header"}
        )

    token = auth_header.replace("Bearer ", "").strip()
    if token != API_KEY:
        return JSONResponse(
            status_code=401, 
            content={"error": "Invalid API key"}
        )

    # Parse request body
    try:
        body = await request.json()
        messages = body.get("messages", [])
        max_tokens = min(body.get("max_tokens", 200), 400)
        temperature = max(0.1, min(body.get("temperature", 0.7), 1.0))
        
        # CRITICAL: Get force mode flag
        is_force_mode = body.get("force_mode", False)
        
        print(f"🚨 RECEIVED REQUEST - force_mode from body: {is_force_mode}")
        print(f"🚨 Type of force_mode: {type(is_force_mode)}")
        
        if not messages or not isinstance(messages, list):
            raise ValueError("Messages field is required and must be a list")
            
    except Exception as e:
        return JSONResponse(
            status_code=400, 
            content={"error": f"Invalid request body: {str(e)}"}
        )

    # Validate messages
    for i, msg in enumerate(messages):
        if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
            return JSONResponse(
                status_code=400,
                content={"error": f"Invalid message format at index {i}"}
            )

    try:
        print(f"📥 Processing request in {'FORCE' if is_force_mode else 'MENTOR'} mode - FIXED")
        print(f"📊 Total messages: {len(messages)}")
        print(f"🎯 CRITICAL - Mode flag received: {is_force_mode}")
        
        # Generate response with FIXED mode handling
        response_content = generate_response(
            messages=messages,
            is_force_mode=is_force_mode,
            max_tokens=max_tokens,
            temperature=temperature
        )
        
        print(f"✅ Generated response in {'FORCE' if is_force_mode else 'MENTOR'} mode")
        print(f"📝 Response preview: {response_content[:100]}...")
        
        return {
            "id": f"chatcmpl-apollo-{hash(str(messages)) % 10000}",
            "object": "chat.completion",
            "created": int(torch.tensor(0).item()),
            "model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-fixed",
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": response_content
                    },
                    "finish_reason": "stop"
                }
            ],
            "usage": {
                "prompt_tokens": len(str(messages)),
                "completion_tokens": len(response_content),
                "total_tokens": len(str(messages)) + len(response_content)
            },
            "apollo_mode": "force" if is_force_mode else "mentor",
            "mode_validation": "FIXED - Strong enforcement",
            "model_optimizations": "qwen2_0.5B_fixed"
        }
        
    except Exception as e:
        print(f"❌ Chat completion error: {e}")
        return JSONResponse(
            status_code=500,
            content={"error": f"Internal server error: {str(e)}"}
        )

if __name__ == "__main__":
    import uvicorn
    print("🚀 Starting Apollo AI Backend v3.1-FIXED - Strong Mode Enforcement...")
    print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
    print("🎯 Mentor Mode: FIXED - Always asks guiding questions")
    print("⚡ Force Mode: FIXED - Always gives direct answers")
    print("🔧 New: Response validation and mode enforcement")
    uvicorn.run(app, host="0.0.0.0", port=7860)