File size: 12,906 Bytes
9c1b824 afb15e3 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 0ee4730 b397650 9c1b824 b397650 9c1b824 b397650 9c1b824 0ee4730 9c1b824 b397650 0ee4730 9c1b824 379615b 9c1b824 379615b b397650 afb15e3 b397650 379615b afb15e3 84677b5 afb15e3 b397650 afb15e3 379615b b397650 afb15e3 379615b 0ee4730 379615b 0ee4730 379615b 3afe501 afb15e3 b397650 0ee4730 afb15e3 0ee4730 afb15e3 379615b afb15e3 c5cd891 afb15e3 379615b afb15e3 379615b afb15e3 379615b 84677b5 379615b 84677b5 379615b 84677b5 afb15e3 84677b5 afb15e3 fc679ee afb15e3 0ee4730 afb15e3 379615b afb15e3 379615b afb15e3 0ee4730 afb15e3 0ee4730 194b2d7 afb15e3 84677b5 afb15e3 84677b5 afb15e3 0ee4730 9c1b824 0ee4730 afb15e3 194b2d7 70df3dc fc679ee afb15e3 0ee4730 b397650 afb15e3 b397650 9c1b824 0ee4730 9c1b824 0ee4730 45afec6 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 84677b5 379615b 0ee4730 afb15e3 b397650 fc679ee afb15e3 9c1b824 0ee4730 9c1b824 0ee4730 b397650 0ee4730 9c1b824 3afe501 afb15e3 379615b afb15e3 fc679ee afb15e3 0ee4730 fc679ee b397650 3afe501 afb15e3 0ee4730 379615b 0ee4730 70df3dc afb15e3 0ee4730 70df3dc 0ee4730 fc679ee afb15e3 0ee4730 3afe501 0ee4730 9c1b824 0ee4730 afb15e3 b397650 afb15e3 0ee4730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware
# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B", version="3.1.0-FIXED")
# === CORS ===
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"
# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)
print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()
print("✅ Qwen2-0.5B model ready!")
def create_conversation_prompt(messages: list, is_force_mode: bool) -> str:
"""
Create a conversation prompt with STRONG mode enforcement
"""
if is_force_mode:
system_prompt = """FORCE MODE - DIRECT ANSWERS ONLY:
You MUST give direct, complete, factual answers. Do NOT ask questions. Provide exact solutions, working code, and clear explanations.
EXAMPLE FORCE RESPONSE:
Q: What does len() do in Python?
A: len() returns the number of items in an object. Examples:
- len([1,2,3]) returns 3
- len("hello") returns 5
- len({1,2,3}) returns 3
Always be direct and informative. Never ask "What do you think?" or similar questions."""
else:
system_prompt = """MENTOR MODE - GUIDED LEARNING ONLY:
You are a programming teacher. You MUST guide students to discover answers themselves. NEVER give direct answers or complete solutions. ALWAYS respond with guiding questions and hints.
EXAMPLE MENTOR RESPONSE:
Q: What does len() do in Python?
A: Great question! What do you think might happen if you run len([1,2,3]) in Python? Can you guess what number it would return? Try it and see! What pattern do you notice?
Always ask questions to guide learning. Never give direct answers."""
# Build conversation with recent context
conversation = f"System: {system_prompt}\n\n"
# Add last 6 messages (3 pairs) for context but prioritize mode compliance
recent_messages = messages[-6:] if len(messages) > 6 else messages
for msg in recent_messages:
role = msg.get("role", "")
content = msg.get("content", "")
if role == "user":
conversation += f"Student: {content}\n"
elif role == "assistant":
conversation += f"Assistant: {content}\n"
conversation += "Assistant:"
return conversation
def validate_response_mode(response: str, is_force_mode: bool) -> str:
"""
CRITICAL: Enforce mode compliance in responses
"""
response = response.strip()
if is_force_mode:
# Force mode: Must be direct, no questions
has_questioning = any(phrase in response.lower() for phrase in [
"what do you think", "can you tell me", "what would happen",
"try it", "guess", "what pattern", "how do you", "what's your"
])
if has_questioning or response.count("?") > 1:
# Convert to direct answer
print("🔧 Converting to direct answer for force mode")
direct_parts = []
for sentence in response.split("."):
if "?" not in sentence and len(sentence.strip()) > 10:
direct_parts.append(sentence.strip())
if direct_parts:
return ". ".join(direct_parts[:2]) + "."
else:
return "Here's the direct answer: " + response.split("?")[0].strip() + "."
else:
# Mentor mode: Must have questions and guidance
has_questions = "?" in response
has_guidance = any(phrase in response.lower() for phrase in [
"what do you think", "can you", "try", "what would", "how do you", "what pattern"
])
if not has_questions and not has_guidance:
# Convert to guiding questions
print("🔧 Adding guiding questions for mentor mode")
return f"Interesting! {response} What do you think about this? Can you tell me what part makes most sense to you?"
return response
def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
"""
Generate response using the AI model with STRONG mode enforcement
"""
try:
# Create conversation prompt with strong mode directives
prompt = create_conversation_prompt(messages, is_force_mode)
print(f"🎯 Generating {'FORCE' if is_force_mode else 'MENTOR'} response with FIXED logic")
print(f"🔍 DEBUG: force_mode = {is_force_mode}")
print(f"📝 System prompt preview: {prompt.split('Student:')[0][:150]}...")
# Adjust generation parameters based on mode
if is_force_mode:
# Force mode: Lower temperature for more focused, direct responses
generation_temp = 0.2
generation_tokens = min(max_tokens, 250)
else:
# Mentor mode: Slightly higher temperature for more varied questioning
generation_temp = 0.4
generation_tokens = min(max_tokens, 200)
print(f"🎛️ Using temperature: {generation_temp}, max_tokens: {generation_tokens}")
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
# Generate response with mode-specific parameters
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=generation_tokens,
temperature=generation_temp,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
top_p=0.9,
repetition_penalty=1.1
)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generated part
response = full_response[len(prompt):].strip()
# Clean up response - remove role markers
response = response.replace("Student:", "").replace("Assistant:", "").replace("System:", "").strip()
# Remove any remaining conversation artifacts
if "\n" in response:
response = response.split("\n")[0].strip()
print(f"✅ Raw generated response: {response[:100]}...")
# CRITICAL: Validate and enforce mode compliance
validated_response = validate_response_mode(response, is_force_mode)
print(f"✅ Final validated response length: {len(validated_response)}")
print(f"📝 Mode compliance: {'FORCE' if is_force_mode else 'MENTOR'}")
if not validated_response or len(validated_response) < 10:
# Strong fallback responses based on mode
if is_force_mode:
return "len() returns the number of items in a sequence. For example: len([1,2,3]) returns 3, len('hello') returns 5."
else:
return "What do you think len() might do? Try running len([1,2,3]) and see what happens! What number do you get?"
return validated_response
except Exception as e:
print(f"❌ Generation error: {e}")
# Mode-specific error fallbacks
if is_force_mode:
return "I need you to provide a more specific question so I can give you the exact answer you need."
else:
return "That's an interesting question! What do you think might be the answer? Can you break it down step by step?"
# === Routes ===
@app.get("/")
def root():
return {
"message": "🤖 Apollo AI Backend v3.1-FIXED - Qwen2-0.5B",
"model": "Qwen/Qwen2-0.5B-Instruct with LoRA",
"status": "ready",
"modes": {
"mentor": "Guides learning with questions - FIXED",
"force": "Provides direct answers - FIXED"
},
"fixes": "Strong mode enforcement, response validation"
}
@app.get("/health")
def health():
return {
"status": "healthy",
"model_loaded": True,
"model_size": "0.5B",
"version": "3.1-FIXED"
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
# Validate API key
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return JSONResponse(
status_code=401,
content={"error": "Missing or invalid Authorization header"}
)
token = auth_header.replace("Bearer ", "").strip()
if token != API_KEY:
return JSONResponse(
status_code=401,
content={"error": "Invalid API key"}
)
# Parse request body
try:
body = await request.json()
messages = body.get("messages", [])
max_tokens = min(body.get("max_tokens", 200), 400)
temperature = max(0.1, min(body.get("temperature", 0.7), 1.0))
# CRITICAL: Get force mode flag
is_force_mode = body.get("force_mode", False)
print(f"🚨 RECEIVED REQUEST - force_mode from body: {is_force_mode}")
print(f"🚨 Type of force_mode: {type(is_force_mode)}")
if not messages or not isinstance(messages, list):
raise ValueError("Messages field is required and must be a list")
except Exception as e:
return JSONResponse(
status_code=400,
content={"error": f"Invalid request body: {str(e)}"}
)
# Validate messages
for i, msg in enumerate(messages):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
return JSONResponse(
status_code=400,
content={"error": f"Invalid message format at index {i}"}
)
try:
print(f"📥 Processing request in {'FORCE' if is_force_mode else 'MENTOR'} mode - FIXED")
print(f"📊 Total messages: {len(messages)}")
print(f"🎯 CRITICAL - Mode flag received: {is_force_mode}")
# Generate response with FIXED mode handling
response_content = generate_response(
messages=messages,
is_force_mode=is_force_mode,
max_tokens=max_tokens,
temperature=temperature
)
print(f"✅ Generated response in {'FORCE' if is_force_mode else 'MENTOR'} mode")
print(f"📝 Response preview: {response_content[:100]}...")
return {
"id": f"chatcmpl-apollo-{hash(str(messages)) % 10000}",
"object": "chat.completion",
"created": int(torch.tensor(0).item()),
"model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-fixed",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(str(messages)),
"completion_tokens": len(response_content),
"total_tokens": len(str(messages)) + len(response_content)
},
"apollo_mode": "force" if is_force_mode else "mentor",
"mode_validation": "FIXED - Strong enforcement",
"model_optimizations": "qwen2_0.5B_fixed"
}
except Exception as e:
print(f"❌ Chat completion error: {e}")
return JSONResponse(
status_code=500,
content={"error": f"Internal server error: {str(e)}"}
)
if __name__ == "__main__":
import uvicorn
print("🚀 Starting Apollo AI Backend v3.1-FIXED - Strong Mode Enforcement...")
print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
print("🎯 Mentor Mode: FIXED - Always asks guiding questions")
print("⚡ Force Mode: FIXED - Always gives direct answers")
print("🔧 New: Response validation and mode enforcement")
uvicorn.run(app, host="0.0.0.0", port=7860) |