File size: 10,268 Bytes
9c1b824
 
 
 
 
 
 
 
 
3c88a76
9c1b824
0ee4730
9c1b824
 
 
 
 
 
 
 
0ee4730
 
9c1b824
 
 
0ee4730
b397650
9c1b824
b397650
 
9c1b824
b397650
9c1b824
 
 
0ee4730
 
 
9c1b824
b397650
0ee4730
9c1b824
 
379615b
9c1b824
379615b
3c88a76
 
379615b
3c88a76
afb15e3
3c88a76
 
 
 
afb15e3
3c88a76
84677b5
3c88a76
afb15e3
3c88a76
 
 
 
 
afb15e3
3c88a76
b397650
3c88a76
 
b397650
3c88a76
 
0ee4730
379615b
 
 
3c88a76
0ee4730
3c88a76
379615b
3afe501
b397650
3c88a76
0ee4730
3c88a76
379615b
 
3c88a76
 
afb15e3
3c88a76
afb15e3
3c88a76
 
afb15e3
3c88a76
 
379615b
 
3c88a76
379615b
3c88a76
379615b
 
 
afb15e3
 
379615b
 
 
 
3c88a76
 
379615b
84677b5
379615b
 
84677b5
379615b
 
84677b5
3c88a76
 
afb15e3
3c88a76
 
 
 
 
 
 
afb15e3
3c88a76
84677b5
3c88a76
 
 
 
fc679ee
3c88a76
0ee4730
3c88a76
 
379615b
3c88a76
379615b
3c88a76
0ee4730
3c88a76
0ee4730
 
194b2d7
84677b5
3c88a76
84677b5
3c88a76
0ee4730
 
9c1b824
 
0ee4730
3c88a76
194b2d7
70df3dc
fc679ee
3c88a76
 
afb15e3
3c88a76
0ee4730
 
 
 
b397650
 
 
afb15e3
3c88a76
b397650
9c1b824
 
0ee4730
 
9c1b824
 
0ee4730
 
 
 
45afec6
9c1b824
 
0ee4730
 
 
 
9c1b824
0ee4730
9c1b824
 
 
84677b5
379615b
0ee4730
3c88a76
b397650
fc679ee
3c88a76
 
afb15e3
9c1b824
0ee4730
 
9c1b824
0ee4730
 
 
 
 
b397650
0ee4730
 
 
 
 
 
9c1b824
3afe501
3c88a76
fc679ee
3c88a76
0ee4730
 
fc679ee
b397650
 
3afe501
 
3c88a76
afb15e3
0ee4730
379615b
0ee4730
70df3dc
3c88a76
0ee4730
 
 
 
 
 
 
 
 
 
 
70df3dc
 
0ee4730
fc679ee
3c88a76
 
0ee4730
3afe501
 
0ee4730
 
 
 
9c1b824
 
0ee4730
 
3c88a76
b397650
3c88a76
 
 
0ee4730
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware

# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B", version="4.0.0-TRULY-FIXED")

# === CORS ===
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"

# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    trust_remote_code=True,
    torch_dtype=torch.float32,
    device_map="cpu"
)

print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()

print("✅ Qwen2-0.5B model ready!")

def create_conversation_prompt(messages: list, is_force_mode: bool) -> str:
    """Create a conversation prompt with clear mode instructions"""
    
    if is_force_mode:
        system_prompt = """You are a helpful programming assistant. Give direct, complete answers with examples. Do not ask questions back to the user. Provide clear explanations and working code when relevant.

When asked about Python functions, provide:
1. What the function does
2. Clear examples with output
3. Common use cases

Be direct and informative."""
    else:
        system_prompt = """You are a programming teacher focused on helping students learn through discovery. Guide students with questions and hints rather than giving direct answers. 

When asked about concepts:
1. Ask what they think might happen
2. Encourage them to try things out
3. Guide them to discover patterns
4. Ask follow-up questions to deepen understanding

Help them learn by thinking, not by giving answers directly."""
    
    # Build conversation
    conversation = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
    
    # Add conversation history (last 4 messages for context)
    recent_messages = messages[-4:] if len(messages) > 4 else messages
    
    for msg in recent_messages:
        role = msg.get("role", "")
        content = msg.get("content", "")
        conversation += f"<|im_start|>{role}\n{content}<|im_end|>\n"
    
    conversation += "<|im_start|>assistant\n"
    return conversation

def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
    """Generate response using the AI model"""
    try:
        # Create conversation prompt
        prompt = create_conversation_prompt(messages, is_force_mode)
        
        print(f"🎯 Generating {'FORCE (Direct)' if is_force_mode else 'MENTOR (Questions)'} response")
        print(f"🔍 Mode flag: {is_force_mode}")
        
        # Adjust parameters based on mode
        if is_force_mode:
            generation_temp = 0.3  # More focused for direct answers
            generation_tokens = min(max_tokens, 300)
        else:
            generation_temp = 0.5  # More creative for questions
            generation_tokens = min(max_tokens, 250)
        
        # Tokenize input
        inputs = tokenizer(prompt, return_tensors="pt", max_length=1500, truncation=True)
        
        # Generate response
        with torch.no_grad():
            outputs = model.generate(
                inputs.input_ids,
                max_new_tokens=generation_tokens,
                temperature=generation_temp,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                top_p=0.9,
                repetition_penalty=1.1,
                no_repeat_ngram_size=3
            )
        
        # Decode response
        full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract only the new generated part
        response = full_response[len(prompt):].strip()
        
        # Clean up response
        response = response.replace("<|im_end|>", "").strip()
        
        # Remove conversation artifacts
        lines = response.split('\n')
        clean_lines = []
        for line in lines:
            line = line.strip()
            if not line.startswith(('<|im_start|>', '<|im_end|>', 'system:', 'user:', 'assistant:')):
                clean_lines.append(line)
        
        response = '\n'.join(clean_lines).strip()
        
        # Take first paragraph if too long
        if len(response) > max_tokens * 4:
            paragraphs = response.split('\n\n')
            response = paragraphs[0] if paragraphs else response[:max_tokens * 4]
        
        print(f"✅ Generated response: {response[:100]}...")
        
        # Simple validation - no template injection
        if not response or len(response) < 10:
            if is_force_mode:
                return "I need more specific information to provide a direct answer. Could you clarify your question?"
            else:
                return "That's a great question to explore! What do you think might be the answer? Try experimenting and see what you discover!"
        
        return response
        
    except Exception as e:
        print(f"❌ Generation error: {e}")
        if is_force_mode:
            return "I encountered an error generating a direct response. Please try rephrasing your question."
        else:
            return "Interesting challenge! What approach do you think might work here? Let's explore this together."

# === Routes ===
@app.get("/")
def root():
    return {
        "message": "🤖 Apollo AI Backend v4.0-TRULY-FIXED - Qwen2-0.5B",
        "model": "Qwen/Qwen2-0.5B-Instruct with LoRA", 
        "status": "ready",
        "modes": {
            "mentor": "Guides learning with questions - REALLY FIXED",
            "force": "Provides direct answers - REALLY FIXED"
        },
        "fixes": "Removed all template responses, pure AI generation"
    }

@app.get("/health")
def health():
    return {
        "status": "healthy", 
        "model_loaded": True, 
        "model_size": "0.5B",
        "version": "4.0-TRULY-FIXED"
    }

@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
    # Validate API key
    auth_header = request.headers.get("Authorization", "")
    if not auth_header.startswith("Bearer "):
        return JSONResponse(
            status_code=401, 
            content={"error": "Missing or invalid Authorization header"}
        )

    token = auth_header.replace("Bearer ", "").strip()
    if token != API_KEY:
        return JSONResponse(
            status_code=401, 
            content={"error": "Invalid API key"}
        )

    # Parse request body
    try:
        body = await request.json()
        messages = body.get("messages", [])
        max_tokens = min(body.get("max_tokens", 200), 400)
        temperature = max(0.1, min(body.get("temperature", 0.7), 1.0))
        
        # Get force mode flag
        is_force_mode = body.get("force_mode", False)
        
        print(f"🚨 REQUEST RECEIVED - force_mode: {is_force_mode}")
        print(f"📝 Last user message: {messages[-1].get('content', '') if messages else 'None'}")
        
        if not messages or not isinstance(messages, list):
            raise ValueError("Messages field is required and must be a list")
            
    except Exception as e:
        return JSONResponse(
            status_code=400, 
            content={"error": f"Invalid request body: {str(e)}"}
        )

    # Validate messages
    for i, msg in enumerate(messages):
        if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
            return JSONResponse(
                status_code=400,
                content={"error": f"Invalid message format at index {i}"}
            )

    try:
        print(f"📥 Processing in {'FORCE (Direct Answer)' if is_force_mode else 'MENTOR (Guiding Questions)'} mode")
        
        # Generate response - NO POST-PROCESSING
        response_content = generate_response(
            messages=messages,
            is_force_mode=is_force_mode,
            max_tokens=max_tokens,
            temperature=temperature
        )
        
        print(f"✅ Pure AI response generated: {response_content[:150]}...")
        
        return {
            "id": f"chatcmpl-apollo-{hash(str(messages)) % 10000}",
            "object": "chat.completion",
            "created": int(torch.tensor(0).item()),
            "model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-truly-fixed",
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": response_content
                    },
                    "finish_reason": "stop"
                }
            ],
            "usage": {
                "prompt_tokens": len(str(messages)),
                "completion_tokens": len(response_content),
                "total_tokens": len(str(messages)) + len(response_content)
            },
            "apollo_mode": "force_direct" if is_force_mode else "mentor_questions",
            "pure_ai_response": True
        }
        
    except Exception as e:
        print(f"❌ Chat completion error: {e}")
        return JSONResponse(
            status_code=500,
            content={"error": f"Internal server error: {str(e)}"}
        )

if __name__ == "__main__":
    import uvicorn
    print("🚀 Starting Apollo AI Backend v4.0-TRULY-FIXED")
    print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
    print("🎯 Mentor Mode: Pure AI questions and guidance")
    print("⚡ Force Mode: Pure AI direct answers")
    print("🚫 NO MORE TEMPLATES - Pure AI responses only")
    uvicorn.run(app, host="0.0.0.0", port=7860)