File size: 10,268 Bytes
9c1b824 3c88a76 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 0ee4730 b397650 9c1b824 b397650 9c1b824 b397650 9c1b824 0ee4730 9c1b824 b397650 0ee4730 9c1b824 379615b 9c1b824 379615b 3c88a76 379615b 3c88a76 afb15e3 3c88a76 afb15e3 3c88a76 84677b5 3c88a76 afb15e3 3c88a76 afb15e3 3c88a76 b397650 3c88a76 b397650 3c88a76 0ee4730 379615b 3c88a76 0ee4730 3c88a76 379615b 3afe501 b397650 3c88a76 0ee4730 3c88a76 379615b 3c88a76 afb15e3 3c88a76 afb15e3 3c88a76 afb15e3 3c88a76 379615b 3c88a76 379615b 3c88a76 379615b afb15e3 379615b 3c88a76 379615b 84677b5 379615b 84677b5 379615b 84677b5 3c88a76 afb15e3 3c88a76 afb15e3 3c88a76 84677b5 3c88a76 fc679ee 3c88a76 0ee4730 3c88a76 379615b 3c88a76 379615b 3c88a76 0ee4730 3c88a76 0ee4730 194b2d7 84677b5 3c88a76 84677b5 3c88a76 0ee4730 9c1b824 0ee4730 3c88a76 194b2d7 70df3dc fc679ee 3c88a76 afb15e3 3c88a76 0ee4730 b397650 afb15e3 3c88a76 b397650 9c1b824 0ee4730 9c1b824 0ee4730 45afec6 9c1b824 0ee4730 9c1b824 0ee4730 9c1b824 84677b5 379615b 0ee4730 3c88a76 b397650 fc679ee 3c88a76 afb15e3 9c1b824 0ee4730 9c1b824 0ee4730 b397650 0ee4730 9c1b824 3afe501 3c88a76 fc679ee 3c88a76 0ee4730 fc679ee b397650 3afe501 3c88a76 afb15e3 0ee4730 379615b 0ee4730 70df3dc 3c88a76 0ee4730 70df3dc 0ee4730 fc679ee 3c88a76 0ee4730 3afe501 0ee4730 9c1b824 0ee4730 3c88a76 b397650 3c88a76 0ee4730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware
# === Setup FastAPI ===
app = FastAPI(title="Apollo AI Backend - Qwen2-0.5B", version="4.0.0-TRULY-FIXED")
# === CORS ===
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# === Configuration ===
API_KEY = os.getenv("API_KEY", "aigenapikey1234567890")
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"
# === Load Model ===
print("🔧 Loading tokenizer for Qwen2-0.5B...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("🧠 Loading Qwen2-0.5B base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu"
)
print("🔗 Applying LoRA adapter to Qwen2-0.5B...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()
print("✅ Qwen2-0.5B model ready!")
def create_conversation_prompt(messages: list, is_force_mode: bool) -> str:
"""Create a conversation prompt with clear mode instructions"""
if is_force_mode:
system_prompt = """You are a helpful programming assistant. Give direct, complete answers with examples. Do not ask questions back to the user. Provide clear explanations and working code when relevant.
When asked about Python functions, provide:
1. What the function does
2. Clear examples with output
3. Common use cases
Be direct and informative."""
else:
system_prompt = """You are a programming teacher focused on helping students learn through discovery. Guide students with questions and hints rather than giving direct answers.
When asked about concepts:
1. Ask what they think might happen
2. Encourage them to try things out
3. Guide them to discover patterns
4. Ask follow-up questions to deepen understanding
Help them learn by thinking, not by giving answers directly."""
# Build conversation
conversation = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
# Add conversation history (last 4 messages for context)
recent_messages = messages[-4:] if len(messages) > 4 else messages
for msg in recent_messages:
role = msg.get("role", "")
content = msg.get("content", "")
conversation += f"<|im_start|>{role}\n{content}<|im_end|>\n"
conversation += "<|im_start|>assistant\n"
return conversation
def generate_response(messages: list, is_force_mode: bool = False, max_tokens: int = 200, temperature: float = 0.7) -> str:
"""Generate response using the AI model"""
try:
# Create conversation prompt
prompt = create_conversation_prompt(messages, is_force_mode)
print(f"🎯 Generating {'FORCE (Direct)' if is_force_mode else 'MENTOR (Questions)'} response")
print(f"🔍 Mode flag: {is_force_mode}")
# Adjust parameters based on mode
if is_force_mode:
generation_temp = 0.3 # More focused for direct answers
generation_tokens = min(max_tokens, 300)
else:
generation_temp = 0.5 # More creative for questions
generation_tokens = min(max_tokens, 250)
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt", max_length=1500, truncation=True)
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=generation_tokens,
temperature=generation_temp,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
top_p=0.9,
repetition_penalty=1.1,
no_repeat_ngram_size=3
)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new generated part
response = full_response[len(prompt):].strip()
# Clean up response
response = response.replace("<|im_end|>", "").strip()
# Remove conversation artifacts
lines = response.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if not line.startswith(('<|im_start|>', '<|im_end|>', 'system:', 'user:', 'assistant:')):
clean_lines.append(line)
response = '\n'.join(clean_lines).strip()
# Take first paragraph if too long
if len(response) > max_tokens * 4:
paragraphs = response.split('\n\n')
response = paragraphs[0] if paragraphs else response[:max_tokens * 4]
print(f"✅ Generated response: {response[:100]}...")
# Simple validation - no template injection
if not response or len(response) < 10:
if is_force_mode:
return "I need more specific information to provide a direct answer. Could you clarify your question?"
else:
return "That's a great question to explore! What do you think might be the answer? Try experimenting and see what you discover!"
return response
except Exception as e:
print(f"❌ Generation error: {e}")
if is_force_mode:
return "I encountered an error generating a direct response. Please try rephrasing your question."
else:
return "Interesting challenge! What approach do you think might work here? Let's explore this together."
# === Routes ===
@app.get("/")
def root():
return {
"message": "🤖 Apollo AI Backend v4.0-TRULY-FIXED - Qwen2-0.5B",
"model": "Qwen/Qwen2-0.5B-Instruct with LoRA",
"status": "ready",
"modes": {
"mentor": "Guides learning with questions - REALLY FIXED",
"force": "Provides direct answers - REALLY FIXED"
},
"fixes": "Removed all template responses, pure AI generation"
}
@app.get("/health")
def health():
return {
"status": "healthy",
"model_loaded": True,
"model_size": "0.5B",
"version": "4.0-TRULY-FIXED"
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
# Validate API key
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return JSONResponse(
status_code=401,
content={"error": "Missing or invalid Authorization header"}
)
token = auth_header.replace("Bearer ", "").strip()
if token != API_KEY:
return JSONResponse(
status_code=401,
content={"error": "Invalid API key"}
)
# Parse request body
try:
body = await request.json()
messages = body.get("messages", [])
max_tokens = min(body.get("max_tokens", 200), 400)
temperature = max(0.1, min(body.get("temperature", 0.7), 1.0))
# Get force mode flag
is_force_mode = body.get("force_mode", False)
print(f"🚨 REQUEST RECEIVED - force_mode: {is_force_mode}")
print(f"📝 Last user message: {messages[-1].get('content', '') if messages else 'None'}")
if not messages or not isinstance(messages, list):
raise ValueError("Messages field is required and must be a list")
except Exception as e:
return JSONResponse(
status_code=400,
content={"error": f"Invalid request body: {str(e)}"}
)
# Validate messages
for i, msg in enumerate(messages):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
return JSONResponse(
status_code=400,
content={"error": f"Invalid message format at index {i}"}
)
try:
print(f"📥 Processing in {'FORCE (Direct Answer)' if is_force_mode else 'MENTOR (Guiding Questions)'} mode")
# Generate response - NO POST-PROCESSING
response_content = generate_response(
messages=messages,
is_force_mode=is_force_mode,
max_tokens=max_tokens,
temperature=temperature
)
print(f"✅ Pure AI response generated: {response_content[:150]}...")
return {
"id": f"chatcmpl-apollo-{hash(str(messages)) % 10000}",
"object": "chat.completion",
"created": int(torch.tensor(0).item()),
"model": f"qwen2-0.5b-{'force' if is_force_mode else 'mentor'}-truly-fixed",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(str(messages)),
"completion_tokens": len(response_content),
"total_tokens": len(str(messages)) + len(response_content)
},
"apollo_mode": "force_direct" if is_force_mode else "mentor_questions",
"pure_ai_response": True
}
except Exception as e:
print(f"❌ Chat completion error: {e}")
return JSONResponse(
status_code=500,
content={"error": f"Internal server error: {str(e)}"}
)
if __name__ == "__main__":
import uvicorn
print("🚀 Starting Apollo AI Backend v4.0-TRULY-FIXED")
print("🧠 Model: Qwen/Qwen2-0.5B-Instruct (500M parameters)")
print("🎯 Mentor Mode: Pure AI questions and guidance")
print("⚡ Force Mode: Pure AI direct answers")
print("🚫 NO MORE TEMPLATES - Pure AI responses only")
uvicorn.run(app, host="0.0.0.0", port=7860) |