|
import gradio as gr |
|
import torch |
|
import random |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
print("Using GPU") |
|
else: |
|
device = "cpu" |
|
print("Using CPU") |
|
|
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") |
|
|
|
|
|
def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed): |
|
|
|
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype=model_precision_type) |
|
model.to(device) |
|
|
|
input_text = f"Expand the following prompt to add more detail: {prompt}" |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) |
|
|
|
if seed == 0: |
|
seed = random.randint(1, 100000) |
|
torch.manual_seed(seed) |
|
else: |
|
torch.manual_seed(seed) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
) |
|
|
|
better_prompt = tokenizer.decode(outputs[0]) |
|
better_prompt = better_prompt.replace("<pad>", "").replace("</s>", "") |
|
return better_prompt |
|
|
|
|
|
prompt = gr.Textbox(label="Prompt", interactive=True) |
|
|
|
model_precision_type = gr.Dropdown(choices=[('fp16', torch.float16), ('fp32', torch.float32)], type="value", value=torch.float16, label="Model Precision", info="fp16 is faster, fp32 is more precise"), |
|
|
|
max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output") |
|
|
|
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself") |
|
|
|
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs") |
|
|
|
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens") |
|
|
|
top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens") |
|
|
|
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") |
|
|
|
examples = [ |
|
[ |
|
"A storefront with 'Text to Image' written on it.", |
|
512, |
|
1.2, |
|
0.5, |
|
1, |
|
50, |
|
42, |
|
] |
|
] |
|
|
|
gr.Interface( |
|
fn=generate, |
|
inputs=[prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed], |
|
outputs=gr.Textbox(label="Better Prompt"), |
|
title="SuperPrompt-v1", |
|
description='Make your prompts more detailed! <br> <a href="https://huggingface.co/roborovski/superprompt-v1">Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Task Prefix: "Expand the following prompt to add more detail:" is already setted! <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)', |
|
examples=examples, |
|
).launch(show_api=False, share=True) |