| import gradio as gr | |
| import torch | |
| import random | |
| from transformers import T5Tokenizer, T5ForConditionalGeneration | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| print("Using GPU") | |
| else: | |
| device = "cpu" | |
| print("Using CPU") | |
| tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") | |
| def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed): | |
| model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype=model_precision_type) | |
| model.to(device) | |
| input_text = f"Expand the following prompt to add more detail: {prompt}" | |
| input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
| if seed == 0: | |
| seed = random.randint(1, 100000) | |
| torch.manual_seed(seed) | |
| else: | |
| torch.manual_seed(seed) | |
| outputs = model.generate( | |
| input_ids, | |
| max_new_tokens=max_new_tokens, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| ) | |
| better_prompt = tokenizer.decode(outputs[0]) | |
| better_prompt = better_prompt.replace("<pad>", "").replace("</s>", "") | |
| return better_prompt | |
| prompt = gr.Textbox(label="Prompt", interactive=True) | |
| model_precision_type = gr.Dropdown(choices=[('fp16', torch.float16), ('fp32', torch.float32)], type="value", value=torch.float16, label="Model Precision", info="fp16 is faster, fp32 is more precise"), | |
| max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output") | |
| repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself") | |
| temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs") | |
| top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens") | |
| top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens") | |
| seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") | |
| examples = [ | |
| [ | |
| "A storefront with 'Text to Image' written on it.", | |
| 512, | |
| 1.2, | |
| 0.5, | |
| 1, | |
| 50, | |
| 42, | |
| ] | |
| ] | |
| gr.Interface( | |
| fn=generate, | |
| inputs=[prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed], | |
| outputs=gr.Textbox(label="Better Prompt"), | |
| title="SuperPrompt-v1", | |
| description='Make your prompts more detailed! <br> <a href="https://huggingface.co/roborovski/superprompt-v1">Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Task Prefix: "Expand the following prompt to add more detail:" is already setted! <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)', | |
| examples=examples, | |
| ).launch(show_api=False, share=True) |