File size: 3,347 Bytes
f97bf68
 
69855af
f97bf68
 
b0413b4
 
 
 
 
 
00b74b1
bcaeb63
6db1658
b0413b4
c9744e9
 
 
 
 
dc36f25
f97bf68
244f082
e1957fa
69855af
a81c6ef
ead2968
 
 
244f082
 
 
 
 
 
 
 
 
 
f97bf68
a121e94
f97bf68
 
f6bfd01
1aa631a
 
051f066
 
1aa631a
 
 
 
 
 
 
 
 
 
2d82305
f97bf68
244f082
 
1aa631a
ead2968
 
 
 
 
6753cc6
244f082
 
f97bf68
1aa631a
f97bf68
051f066
78cc8b8
f97bf68
572937f
f97bf68
ba5b46d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import torch
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
    

def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed):

    model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype=model_precision_type)
    model.to(device)
    
    input_text = f"Expand the following prompt to add more detail: {prompt}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)

    if seed == 0:
        seed = random.randint(1, 100000)
        torch.manual_seed(seed)
    else:
        torch.manual_seed(seed)
        
    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )

    better_prompt = tokenizer.decode(outputs[0])
    better_prompt = better_prompt.replace("<pad>", "").replace("</s>", "")
    return better_prompt


prompt = gr.Textbox(label="Prompt", interactive=True)

model_precision_type = gr.Dropdown(choices=[('fp16', torch.float16), ('fp32', torch.float32)], type="value", value=torch.float16, label="Model Precision", info="fp16 is faster, fp32 is more precise"),

max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
    
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
    
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs")

top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens")

top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")

seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")

examples = [
    [
        "A storefront with 'Text to Image' written on it.",
        512,
        1.2,
        0.5,
        1,
        50,
        42,
    ]
]

gr.Interface(
    fn=generate,
    inputs=[prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed],
    outputs=gr.Textbox(label="Better Prompt"),
    title="SuperPrompt-v1",
    description='Make your prompts more detailed! <br> <a href="https://huggingface.co/roborovski/superprompt-v1">Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Task Prefix: "Expand the following prompt to add more detail:" is already setted! <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)',
    examples=examples,
).launch(show_api=False, share=True)